联邦学习
文章平均质量分 95
联邦学习+区块链居多
xxx_undefined
这个作者很懒,什么都没留下…
展开
-
《FedCoin:A_Peer-to-Peer_Payment_System_for_Federated_Learning》精读
将Shapley值的计算与区块链共识挑战结合是非常有创新的疑问中心化叠加去中心化是否可行?SV值计算细节不是很理解(算法13~14行),有懂得大佬欢迎评论区留言FL训练与区块链SV计算时间上是一前一后串行还是并行?算法1中计算每个轮次是并行?算法3中又是先训练好模型再发布SV计算任务即时间上是串行?不知道是不是理解有误)httpshttpshttpshttpshttpshttps。...原创 2021-08-18 15:52:26 · 4073 阅读 · 2 评论 -
联邦学习实战-2-用FATE从零实现横向逻辑回归
从零实现横向逻辑回归原创 2021-08-16 15:42:38 · 3620 阅读 · 8 评论 -
联邦学习实战-1:用python从零开始实现横向联邦学习
什么是联邦学习?简单来说就是在一个多方的环境中,数据集是零散的(在各个不同的客户端中),那么怎样实现机器学习算法呢?首先想到的就是将多个数据集合并合并起来,然后统一的使用传统的机器学习或者深度学习算法进行计算,但是如果有一方因为数据隐私问题不愿意提交自己的数据呢?那么就出现了联邦学习,核心就是“数据不动模型动,数据可用不可见”多个客户端不提交数据而是提交训练时的参数/梯度给中心服务器,中心服务器进行计算后再将参数/梯度返回多个客户端再学习的过程整个过程数据的所有权依然在用户手中,这就是联邦学习当原创 2021-08-09 16:00:16 · 35125 阅读 · 121 评论 -
《Decentralized_Privacy_Using_Blockchain-Enabled_Federated_Learning_in_Fog_Computing》精读
论文地址:https://ieeexplore.ieee.org/document/9019859糟心的一篇文章,整段照抄引用文章、放公式不解释变量字母含义、题目起攻击的防御不写防御,不知这文章怎么上的一区期刊一、基本信息、前置知识1.1 基本信息《Decentralized Privacy Using Blockchain-Enabled Federated Learning in Fog Computing》作者:Youyang Qu; Longxiang Gao; Tom H. Lu.原创 2021-07-27 14:10:45 · 3510 阅读 · 1 评论 -
《BlockFLA:Accountable_Federated_Learning_via_Hybrid_Blockchain_Architecture》精读
本篇可以作为了解联邦学习中后门攻击的引导篇, 创新点一般, 营养度一般对于文中的创新点进行总结:双链架构:私有链负责保存参数融合参数、公链负责记录节点上传参数数据的Hash以及账号的激励与惩罚私有安全云记录节点日志与参数数据,用于后门检测后门检测算法:事先知道木马模式/logo的情况下构造有毒验证集通过将基类(未被注入后门)注入后门,用模型检测过程中异常贡献的参数,随之找出后门注入节点个人疑问:双链架构共识一快一慢如何保持同步?私有云的存在与私有链的存在是否冲突?使用私有安全云代替私有.原创 2021-07-19 15:44:22 · 598 阅读 · 3 评论 -
《DEEP GRADIENT COMPRESSION:REDUCING THE COMMUNICATION BANDWIDTH FOR DISTRIBUTED TRAINING》精读
DEEP GRADIENT COMPRESSION:REDUCING THE COMMUNICATION BANDWIDTH FOR DISTRIBUTED TRAINING顶会: ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议)深度学习顶会摘要分布式SGD中99.9%的梯度交换是冗余的Deep Gradient Compression (DGC) 深度梯度压缩方法减少通信带宽并且没有精度的原创 2021-05-07 20:50:06 · 2728 阅读 · 2 评论 -
《Scalable and Communication-efficient Decentralized Federated Edge Learning with.....》精读
Scalable and Communication-efficient Decentralized Federated Edge Learning with Multi-blockchain Framework期刊: Communications in Computer and Information Science这篇比较水,不建议基本概念FEL: Federated Edge Learning 联邦边缘学习Infer Attack : 推理攻击对于FL仅仅是传递参数,但是也可以原创 2021-04-29 11:05:40 · 607 阅读 · 4 评论 -
《Proof of Federated Learning: A Novel Energy-recycling Consensus Algorithm》精读
Proof of Federated Learning: A Novel Energy-recycling Consensus Algorithm摘要将Pow的能源浪费问题与Federal Learning结合起来提出了一个基于反向博弈(reverse game-based)的数据交易机制和隐私保护模型验证机制IntroductionPOW:指出目前POW的电力消耗/资源浪费的问题(对比于澳大利亚、美国家庭),偏离环境友好因此后面提出了能源保护的POS共识以及能源循环: 通过计算一些原创 2021-04-23 23:08:06 · 868 阅读 · 2 评论 -
《Blockchained On-Device Federated Learning》精读
基本信息《基于区块链技术的跨设备联邦学习》摘要我们结合区块链技术,这篇文章提出了一个区块链联邦学习(blockchain federated learning, BlockFL)架构,其中交换和验证了本地学习模型的更新。这使得设备上的机器学习无需任何集中的训练数据或通过使用区块链中的共识机制进行协调。此外,我们分析了BlockFL的端到端延迟模型,并通过考虑通信、计算和共识延迟来刻画最优的块生成率。1.Introduction引入未来的无线系统可以保证随时随地的低延迟和高可靠性为此,设备原创 2021-04-13 15:36:44 · 2612 阅读 · 1 评论 -
《Federated_Machine_Learning:Concept_and_Applications》精读
《Federated_Machine_Learning:Concept_and_Applications》《联邦学习的概念和应用》论文的学习一、基本信息基本概念:Honest-but-Curious(HBC)(1)节点将不会了解到关于数据集合的任何有用信息(2)节点可以被赋予搜索集合的权利并将适当的(加密的)文档返回给其他节点的能力。同态加密概念如果我们有一个加密函数 f , 把明文A变成密文A’, 把明文B变成密文B’,也就是说f(A) = A’ ,f(B) = B’ 。另外我们还有原创 2021-04-07 17:25:54 · 4985 阅读 · 1 评论