- 博客(5)
- 收藏
- 关注
原创 学习论文 KPConv: Flexible and Deformable Convolution for Point Clouds
论文链接arxiv推荐 讲的很清楚的一篇Blog本文是POINTNET作者的又一篇文章,KPCONV = Kernel Point Convolution有两个特点,分别是Flexible和Deformable对于输入点,将它们的特征分为PPP和FFF两个部分,对应坐标和其他特征这篇文章将点云的工作分为了:Projection networksProjection \ ne...
2019-10-22 19:44:19 703 1
原创 blog整合
用pycharm同步服务器文件代码:https://blog.csdn.net/github_36326955/article/details/79877520推荐可以尝试使用Xshell和XFTP 会简单一些CONDA环境从服务器到另一服务器克隆https://blog.csdn.net/shincling/article/details/75534121主要先把目录下的环境upload...
2019-10-18 09:38:36 127
原创 Dynamic Graph CNN for Learning on Point Clouds (Edgeconv)
论文链接:http://arxiv.org/abs/1801.07829疑问:Related work里的geometric deep learning??spirit graph neural networks?引言:这篇文章主要总结了前人关于voxel和Pointnet的理论,并且提出了一种有效提取几何结构的操作层方式(Edgeconv),并且在保留了排列不变性的基础上说明了动态更新图...
2019-10-12 23:30:58 980
原创 PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
这篇文章是stanford在Point之后发的又一篇点云处理的文章PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space主要针对pointnet一些不足 做出了改进:pointnet使用的是mlp的结构,因此对局部几何特征提取以及图的拓扑结构完全忽略pointnet本身是在Modelne...
2019-10-11 19:32:42 340
原创 PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
总结 Pointnet论文链接:https://arxiv.org/abs/1612.00593v2项目链接:https://github.com/charlesq34/pointnet基本内容:分类网络:使用点云作为基本输入,分别通过T-net(3)(这里经过T-net预测出一个3 * 3的矩阵,然后用输入矩阵n * 3与这个矩阵相乘)再经过 mlp(64,64) T-net(64) m...
2019-10-04 19:51:12 310
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人