PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

这篇文章是stanford在Point之后发的又一篇点云处理的文章
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
主要针对pointnet一些不足 做出了改进:

  1. pointnet使用的是mlp的结构,因此对局部几何特征提取以及图的拓扑结构完全忽略
  2. pointnet本身是在Modelnet40上训练的,训练过程是均匀点云密度的情况下,而真实场景点云密度并不是这样的。

整体思路:模仿CNN提取2D图像的思想过程,因为CNN提取2D图像conv2d的过程就是不断在特征图上做卷积,使感受野扩大,满足2D图像的平移不变性。
因此 本文pointnet++的思路就是模仿这个过程 进行
采样-> 分组-> pointnet特征提取 ->再采样
随着过程的进行,采样的点会减少,以此模拟CNN特征提取的一个过程。
在这里插入图片描述

Our hierarchical structure is composed by a number of set abstraction
levels (Fig. 2). At each level, a set of points is processed and
abstracted to produce a new set with fewer elements. The set
abstraction level is made of three key layers: Sampling layer,
Grouping layer and PointNet layer. The Sampling layer selects a set of
points from input points, which defines the centroids of local
regions. Grouping layer then constructs local region sets by finding
“neighboring” points around the centroids. PointNet layer uses a
mini-PointNet to encode local region patterns into feature vectors. A
set abstraction level takes an N × (d + C) matrix as input that is
from N points with d-dim coordinates and C-dim point feature. It
outputs an N? × (d +C?) matrix of N? subsampled points with d-dim
coordinates and new C?-dim feature vectors summarizing local context.
We introduce the layers of a set abstraction level in the followingparagraphs.

网络分成三种层:采样层负责采样,定义局部区域的中心,分组层通过”相邻“进行建设局部区域,pointnet层使用一个mini-pointnet去编码。
输入是n*(d+c)的矩阵,D是维度,C是特征(作者注:保持这种特征+维度 使得无论怎么变换,重要的坐标信息不丢失,特征提取过程则类似CNN特征层)
采样层: FPS(最远点采样) 类似Dijkstra算法思想,维护一个点集,每次迭代取整体输入集合中离该点集最远的点,作为未来分组的中心点,这样的方法比随机采样能更好的覆盖集合,代表特征。总共取M个点,这个是根据物体点云选择M。

分组层:输入N*(d+c) 输出N * K*(d+c) K表示”邻域“中最近的K个点 。文章主要比较两种:Ball query 和 KNN(kd-tree) 方法,球查询为查询中心点附近R内的点(实际中会给定K的上限),而KNN可以找到固定的K个点,我们的目的是找到局部几何特征模式,因此寻找需要的尺度下的附近点比固定K重要(因为pointnet可以通过聚合的方式处理K的不确定),所以主张使用BALL QUERY。 这里出现了第二个选择的值 K

Pointnet层:输入是N‘ * K*(d+c’) 输出是 N’ * (d+c’) 。简而言之,通过pointnet的变换和聚合操作,将这个中心点周围K个点的坐标和特征提取出来,用来表示这个点更深 更抽象的特征。
在这里插入图片描述注意这里点的坐标发生了变换,相当于将坐标系中心改换为了Local region的中心点。
至此,网络结构已经结束
下面的就是为了解决密度不均匀提出的一些方法。(稀疏点云和密集点云学到的特征通常不易通用)
提出了两种方法: MSG(Multi-scale grouping) MRG(Multi-resolution grouping)
如图所示,左侧是MSG,效果较好,但是计算耗费大在这里插入图片描述
这里的问题在于采样会不可避免的丢失一些点的信息,而在做分割的时候需要对每个点的信息进行分割,因此文章提出了一种传播(Propagation)方法,如下所示,其中K是最近邻的点数,p是距离次方数,如公式所示进行传播(类似于插值)
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值