【机器学习】01 模型评估与选择

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、评估方法

精度=1-错误率

1.1 留出法

将数据集划分为两个互斥的集合,一个作为训练集S,另一个作为测试集T,在S上训练出模型后,用T评估测试误差,作为对泛化误差的估计。

1.2 k-折交叉验证法

10-折交叉验证:
10-折交叉验证

1.3 自助法

亦称“有放回采样”、“可重复采样”
样本在m次采样中始终不被采到的概率是 ( 1 − 1 m ) m (1-\frac{1}{m})^{m} (1m1)m
取极限得 lim ⁡ m → + ∞ ( 1 − 1 m ) m = 1 e \displaystyle\lim_{m \rightarrow + \infty}(1 - \frac{1}{m})^m = \frac{1}{e} m+lim(1m1)m=e1

二、性能度量

回归任务常用均方误差: E ( f ; D ) = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 E(f;D)=\frac{1}{m}\displaystyle\sum_{i = 1}^{m}(f(x_{i})-y_{i})^2 E(f;D)=m1i=1m(f(xi)yi)2

2.1 错误率与精度

错误率: E ( f ; D ) = 1 m ∑ i = 1 m ii ( f ( x i ) ≠ y i ) E(f;D)=\frac{1}{m}\displaystyle\sum_{i = 1}^{m}\textrm{ii}(f(x_{i})\neq y_{i}) E(f;D)=m1i=1mii(f(xi)=yi)
精度: a c c ( f ; D ) = 1 m ∑ i = 1 m ii ( f ( x i ) = y i ) = 1 − E ( f ; D ) acc(f;D)=\frac{1}{m}\displaystyle\sum_{i = 1}^{m}\textrm{ii}(f(x_{i})= y_{i})=1-E(f;D) acc(f;D)=m1i=1mii(f(xi)=yi)=1E(f;D)

2.2 查准率与查全率

真实情况预测结果
正例 反例
正例TP FN
反例FP TN

查准率= P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP

查全率= R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP

P-R曲线与平衡点示意图
比BEP更常用的F1度量: F 1 = 2 × P × R P + R = 2 × T P 样 例 总 数 + T P − T N F1=\frac{2\times P\times R}{P+R}=\frac{2\times TP}{样例总数+TP-TN} F1=P+R2×P×R=+TPTN2×TP

若对查准率/查全率有不同偏好: F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta}=\frac{(1+\beta^2)\times P\times R}{(\beta^2\times P)+R} Fβ=(β2×P)+R(1+β2)×P×R

β > 1 \beta>1 β>1时查全率有更大影响; β < 1 \beta<1 β<1时查准率有更大影响

2.3 ROC与AUC

ROC曲线纵轴是真正例率TPR,横轴是假正例率FPR
T P R = T P R P + F N TPR=\frac{TP}{RP+FN} TPR=RP+FNTP

F P R = F P T N + F P FPR=\frac{FP}{TN+FP} FPR=TN+FPFP

AUC可通过对ROC曲线下各部分的面积求和而得
A U C = 1 2 ∑ i = 1 m − 1 ( x i + 1 − x i ) × ( y i + y i + 1 ) AUC=\frac{1}{2}\displaystyle\sum_{i = 1}^{m-1}(x_{i+1}-x_{i})\times (y_{i}+y_{i+1}) AUC=21i=1m1(xi+1xi)×(yi+yi+1)

2.4 代价敏感错误率与代价曲线

二分类代价矩阵

真实类别预测类别
第0类 第1类
第0类0 c o s t 01 cost_{01} cost01
第1类 c o s t 10 cost_{10} cost10 0

代价敏感错误率:
代价敏感错误率

三、比较检验

两学习器比较
1、交叉验证t检验
2、McNemar检验(基于列联表,卡方检验)
多学习器比较
1、Friedman检验(基于序值,F检验;判断是否都相同)
在这里插入图片描述

2、Nemenyi后续检验(基于序值进一步判断两两差别)

四、偏差与方差

E ( f ; D ) = ( b i a s ( x ) ) 2 + v a r ( x ) + ϵ 2 E(f;D)=(bias(x))^2+var(x)+\epsilon ^2 E(f;D)=(bias(x))2+var(x)+ϵ2
期望输出与真实输出的差别:
( b i a s ( x ) ) 2 = ( f ˉ ( x ) − y ) 2 (bias(x))^2=(\bar{f}(x)-y)^2 (bias(x))2=(fˉ(x)y)2
同样大小的训练集的变动所导致的性能变化:
v a r ( x ) = E D [ ( f ( x ; D ) − f ˉ ( x ) ) 2 ] var(x)=E_{D}[(f(x;D)-\bar{f}(x))^2] var(x)=ED[(f(x;D)fˉ(x))2]
当前任务上任何学习算法所能达到的期望泛化误差下界:
ϵ 2 = E D [ ( y D − y ) 2 ] \epsilon ^2=E_{D}[(y_{D}-y)^2] ϵ2=ED[(yDy)2]
在这里插入图片描述
1)训练不足,学习器拟合能力不强,偏差主导
2)随着训练程度加强,学习器拟合能力逐渐增强,方差逐渐主导
3)训练充足,学习器的拟合能力很强,方差主导


参考文献:
《机器学习》第二章模型评估与选择——周志华

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值