Tensorflow之变量

本文介绍了TensorFlow中变量的概念,强调它是程序处理共享持久状态的推荐方式。通过`tf.Variable`进行创建,并且说明了变量可以进行运算来改变其值。创建变量时需要提供初始值,且变量的操作遵循与其初始值相同的数据类型。虽然大部分张量运算可以在变量上执行,但变量的形状是不可重构的。
摘要由CSDN通过智能技术生成

变量简介
tensorflow变量用于表示程序处理的共享持久状态的推荐方法。
变量通过tf.variable进行创建和跟踪。tf.variable表示张量,对它执行运算可以改变其值。利用特定运算可以读取和修改此张量的值。
创建变量
要创建变量,请提供一个初始值。tf.variable与初始值的dtype相同。

my_tensor = tf.constant([[1.0,2.0],[3.0,4.0]])
my_variable = tf.Variable(my_tensor)
#变量可以是任何类型,就像张量一样
print("shape:",my_variable.shape)
print("dtype:",my_variable.dtype
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值