PR曲线(Precision-Recall Curve,精确率-召回率曲线)是一种用于评估二分类模型性能的工具,特别适用于不平衡数据集。PR曲线通过绘制精确率(Precision)与召回率(Recall)之间的关系,展示模型在不同决策阈值下的表现。
主要概念
-
精确率(Precision):
- 精确率表示被预测为正类的样本中实际为正类的比例。
- 计算公式:
- 其中,TP(True Positives)为真正例数,FP(False Positives)为假正例数。
-
召回率(Recall):
- 召回率表示所有实际为正类的样本中被正确分类为正类的比例。
- 计算公式:
- 其中,FN(False Negatives)为假负例数。 </