深度学习常见任务类别

深度学习涵盖的任务类型非常广泛,以下按常规方向、应用领域和技术方向进行分类整理:

1. 常规方向分类

深度学习(以下实际上是从机器学习角度来分类的,深度学习作为机器学习的热门子方向,使用此分类也同样适用)按常规方向类型可分为:分类、回归、聚类、降维。

1. 任务类型与监督性

任务 监督性 目标
分类 监督学习 预测离散的类别标签(如垃圾邮件检测)
回归 监督学习 预测连续数值(如房价预测)
聚类 无监督学习 发现数据内在结构,分组相似样本(如客户分群)
降维 无监督学习 减少特征维度,保留关键信息(如数据可视化或去噪)

区别:
• 分类和回归需要带标签的数据,而聚类和降维无需标签。

• 分类与回归属于预测任务,而聚类和降维属于探索性分析或预处理任务。


2. 输入输出对比

任务 输入 输出
分类 特征向量 + 类别标签 离散类别(如“猫”或“狗”)
回归 特征向量 + 连续值标签 连续数值(如房价=500万)
聚类 特征向量(无标签) 样本分组(如簇1、簇2、簇3)
降维 高维特征向量 低维特征表示(如3D→2D)

区别:
• 分类和回归的输出直接对应标签,而聚类和降维的输出是数据结构的抽象表示。


3. 典型算法

任务 常用算法
分类 逻辑回归、SVM、决策树、随机森林、神经网络
回归 线性回归、岭回归、Lasso、神经网络
聚类 K均值、层次聚类、DBSCAN、高斯混合模型(GMM)
降维 PCA、t-SNE、UMAP、LDA(也可用于分类)

区别:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值