深度学习涵盖的任务类型非常广泛,以下按常规方向、应用领域和技术方向进行分类整理:
1. 常规方向分类
深度学习(以下实际上是从机器学习角度来分类的,深度学习作为机器学习的热门子方向,使用此分类也同样适用)按常规方向类型可分为:分类、回归、聚类、降维。
1. 任务类型与监督性
任务 | 监督性 | 目标 |
---|---|---|
分类 | 监督学习 | 预测离散的类别标签(如垃圾邮件检测) |
回归 | 监督学习 | 预测连续数值(如房价预测) |
聚类 | 无监督学习 | 发现数据内在结构,分组相似样本(如客户分群) |
降维 | 无监督学习 | 减少特征维度,保留关键信息(如数据可视化或去噪) |
区别:
• 分类和回归需要带标签的数据,而聚类和降维无需标签。
• 分类与回归属于预测任务,而聚类和降维属于探索性分析或预处理任务。
2. 输入输出对比
任务 | 输入 | 输出 |
---|---|---|
分类 | 特征向量 + 类别标签 | 离散类别(如“猫”或“狗”) |
回归 | 特征向量 + 连续值标签 | 连续数值(如房价=500万) |
聚类 | 特征向量(无标签) | 样本分组(如簇1、簇2、簇3) |
降维 | 高维特征向量 | 低维特征表示(如3D→2D) |
区别:
• 分类和回归的输出直接对应标签,而聚类和降维的输出是数据结构的抽象表示。
3. 典型算法
任务 | 常用算法 |
---|---|
分类 | 逻辑回归、SVM、决策树、随机森林、神经网络 |
回归 | 线性回归、岭回归、Lasso、神经网络 |
聚类 | K均值、层次聚类、DBSCAN、高斯混合模型(GMM) |
降维 | PCA、t-SNE、UMAP、LDA(也可用于分类) |
区别:<