Xavier 正态初始化(Xavier Normal Initialization)是神经网络中权重初始化的一种方法,也称为 Glorot 初始化。这种方法通过设置合适的初始权重来控制信号在网络层间的流动,避免信号在前向传播和反向传播过程中过度增大或减小,从而有助于加快网络的训练速度并提高模型性能。
背景
在深度神经网络中,如果权重初始化不当,可能会导致以下问题:
- 梯度消失(Vanishing Gradient):当权重过小,信号在前向传播时逐层减小,导致后层的梯度趋近于零,影响网络训练。
- 梯度爆炸(Exploding Gradient):当权重过大,信号在前向传播时逐层放大,导致梯度在反向传播时爆炸,影响网络稳定性。
Xavier 正态初始化的原理
Xavier 正态初始化的主要思想是:为了使信号在每层神经元的输入和输出之间保持相同的方差,可以将权重初始化为一个服从特定正态分布的随机值。这种特定的正态分布由神经元的输入和输出数量决定。
公式
对于 Xavier 正态初始化,权重 W被初始化为服从以下正态分布:
其中:
表示均值为 0,方差为
的正态分布。
是当前层输入的神经元数量。
是当前层输出的神经元数量。
优点
- 平衡信号流动:使得信号在每层的输入和输出之间保持相同的方差,避免梯度消失和梯度爆炸。
- 加速收敛:通过良好的权重初始化,可以加速网络的收敛速度,减少训练时间。
在 PyTorch 中,可以使用 torch.nn.init.xavier_normal_
函数来实现 Xavier 正态初始化。Xavier 正态初始化通过选择合适的初始权重分布,帮助维持信号在网络层间的方差稳定,从而缓解梯度消失和梯度爆炸的问题,提高深度神经网络的训练效率和性能。这种方法特别适用于使用 sigmoid 或 tanh 激活函数的网络。对于 ReLU 激活函数,可以使用一种变体称为 He 初始化。