概述
该损失函数旨在学习一个得分函数,该函数可以有效近似数据分布的梯度(得分)。这种方法在基于扩散模型的生成建模中非常常见。
函数参数说明
-
model
:
PyTorch 模型实例,表示时间相关的得分函数。该模型旨在输出得分值,即对对数概率密度的梯度 ∇ x log p ( x ) \nabla_x \log p(x) ∇xlogp(x)。 -
x
:
一个 mini-batch 的训练数据,是模型输入的原始数据。 -
marginal_prob_std
:
一个函数,给定时间 t t t,返回扰动核的标准差 σ ( t ) \sigma(t) σ(t)。它定义了数据的噪声强度随时间的变化,通常在扩散模型中表示噪声添加的动态。 -
condition
:
一个可选条件参数,如果不为None
,则表示模型需要在有条件的情况下进行得分预测(如条件生成任务)。 -
eps
:
用于数值稳定性的小值,避免时间值 t t t 为 0。
解释
1. 采样随机时间 t t t
random_t = torch.rand(x.shape[0], device=x.device) * (1. - eps) + eps
随机生成一组时间点 t t t(大小与数据 batch 的样本数相同)。这些时间点在 [ e p s , 1 ] [eps, 1] [eps,1] 范围内均匀分布。