基于得分匹配(score-based)生成模型的损失函数

概述

该损失函数旨在学习一个得分函数,该函数可以有效近似数据分布的梯度(得分)。这种方法在基于扩散模型的生成建模中非常常见。


函数参数说明

  1. model:
    PyTorch 模型实例,表示时间相关的得分函数。该模型旨在输出得分值,即对对数概率密度的梯度 ∇ x log ⁡ p ( x ) \nabla_x \log p(x) xlogp(x)

  2. x:
    一个 mini-batch 的训练数据,是模型输入的原始数据。

  3. marginal_prob_std:
    一个函数,给定时间 t t t,返回扰动核的标准差 σ ( t ) \sigma(t) σ(t)。它定义了数据的噪声强度随时间的变化,通常在扩散模型中表示噪声添加的动态。

  4. condition:
    一个可选条件参数,如果不为 None,则表示模型需要在有条件的情况下进行得分预测(如条件生成任务)。

  5. eps:
    用于数值稳定性的小值,避免时间值 t t t 为 0。


解释

1. 采样随机时间 t t t
random_t = torch.rand(x.shape[0], device=x.device) * (1. - eps) + eps

随机生成一组时间点 t t t(大小与数据 batch 的样本数相同)。这些时间点在 [ e p s , 1 ] [eps, 1] [eps,1] 范围内均匀分布。

2. 生成标准正态噪声 z z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值