机器学习算法------案例:探究用户对物品类别的喜好细分

该文介绍了一种利用PCA进行特征降维,然后应用K-means进行用户对物品类别喜好的聚类方法。通过合并和处理不同数据集,创建交叉表,选取部分数据,然后用PCA保持90%的方差。K-means模型建立后,评估模型的轮廓系数得分较低,可能需要调整参数或探索更多特征。
摘要由CSDN通过智能技术生成

应用pca和K-means实现用户对物品类别的喜好细分划分

在这里插入图片描述

数据如下:

  • order_products__prior.csv:订单与商品信息
    字段:order_id, product_id, add_to_cart_order, reordered
  • products.csv:商品信息
    字段:product_id, product_name, aisle_id, department_id
  • orders.csv:用户的订单信息
    字段:order_id,user_id,eval_set,order_number,….
  • aisles.csv:商品所属具体物品类别
    字段: aisle_id, aisle

1.需求

在这里插入图片描述
在这里插入图片描述

2.分析

  • 1.获取数据
  • 2.数据基本处理
    • 2.1 合并表格
    • 2.2 交叉表合并
    • 2.3 数据截取
  • 3.特征工程 — pca
  • 4.机器学习(k-means)
  • 5.模型评估
    • sklearn.metrics.silhouette_score(X, labels)
      • 计算所有样本的平均轮廓系数
      • X:特征值
      • labels:被聚类标记的目标值

3.完整代码

import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
#导入数据
order_product = pd.read_csv("order_products__prior.csv")
products = pd.read_csv("products.csv")
orders = pd.read_csv("orders.csv")
aisles = pd.read_csv("aisles.csv")
#合并表格
table1 = pd.merge(order_product, products, on=["product_id", "product_id"])
table2 = pd.merge(table1, orders, on=["order_id", "order_id"])
table = pd.merge(table2, aisles, on=["aisle_id", "aisle_id"])
#交叉表合并
table = pd.crosstab(table["user_id"], table["aisle"])
#数据截取
table = table[:10000]
#特征工程PCA
transfer = PCA(n_components=0.9)
data = transfer.fit_transform(table)
#机器学习
estimator = KMeans(n_clusters=2, random_state=22)
y_predict = estimator.fit_predict(data)
#模型评估
a = silhouette_score(data, y_predict)
print(a)

运行结果

在这里我的运行结果有点低,但是看很多教程的模型评估分数可以达到0.89的样子,目前还不清楚问题出现在哪里,也希望懂这方面的朋友提出自己的意见和看法。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值