KFold实例:基于鸢尾花的K折交叉验证

该博客展示了如何运用Python中的KFold进行交叉验证,以鸢尾花数据集为例,通过测试不同树深(1-10)来确定最优参数,最终找到得分最高的树深。
摘要由CSDN通过智能技术生成

本文是KFold应用的一个实例,基于鸢尾花数据做5折交叉验证,测试最优树深的一个例子。

导入相应包:

import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn.datasets import load_iris
from lightgbm import LGBMClassifier

加载鸢尾花数据:

iris = load_iris()
x, y = iris.data, iris.target

通过交叉验证测试最优树深,从1-10查找,最后选择得分最高的树深。

kf =KFold(n_splits=5, shuffle=True)
max_depths=range(1,11)
result=[]
dit = {}
for max_depth in max_depths:
    for k,(train,test) in enumerate(kf.split(x,y)):
        test_score=[]
        x_train, x_test, y_train, y_test = x[train], x[test], y[train], y[test]
        print("train_split_rate:",len(x_train)/len(x))
        clg = LGBMClassifier(
            objective="multiclass",
            boosting="gbdt",
            learning_rate=0.1,
            max_depth=max_depth,
            n_estimators=100,
            num_leaves=31,
            lambda_l1=0.1,    
            lambda_l2=0.1,    
            seed=0
        )
        clg.fit(x_train,y_train,eval_set=[(x_test, y_test)],verbose=-1)
        print("第%s轮验证:"%(k+1))
        print("本轮训练集得分:%.2f%%"%(clg.score(x_train,y_tra
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值