python数据分析:巴乐兔租房信息

本文基于爬取的巴乐兔租房信息,进行数据分析,包括区域房源数量、异常值处理、价格分布、评论数、评分等。发现价格分布右偏,4.5分房源占比高,评论数与价格相关性低,黄浦、长宁、普陀为平均租金最贵区域。同时,提供地铁站附近房源推荐,并分析了房价最贵的小区和距离站点近的整租房源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据上篇爬取的巴乐兔租房信息,来做一些相关的数据分析。

首先导入相应的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import re
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False

读取数据:

data_1 = pd.read_csv(r"./巴乐兔_上海.csv",sep="::",engine='python',encoding='utf-8',
                     names=["id","name","area","community","url","price","rent_type",
                     "size","traffic_info","release_time","grade","comment_num"])
data_1.head()

查看各个区域的房源个数:

data_1['area'].value_counts()

在这里插入图片描述
这里我发现数据有些异常,图中标红部分,因此我来查看一下这部分数据:

data_1[data_1['area'] == "56"]

在这里插入图片描述
由结果可以看到,实际区域是浦东,数据出错是由于之前爬虫做正则匹配时候,“-”匹配的时候匹配到“7-56号”了,既然原因找到了,正确的数据也找到了,那我们就可以对异常数据进行处理了,将区域显示的56改为浦东即可。
同样的,查看区域为29的数据可以发现:实际都是松江区域的租房信息。因此也同样的数据处理

data_1[data_1['area'] == "29"]

在这里插入图片描述
数据处理如下:

# 异常值处理:56代表的是浦东,29代表的是松江
data_1.loc[data_1['area'] == "56","area"] = "浦东"
data_1.loc[data_1['area'] == "29","area"] = "松江"

再来查看各个区域房源数量:

data_1['area'].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值