什么是最小生成树及其应用
给出一个连通图,每个边有非负边权,则使图保持连通状态的同时令边权和最小的算法即为最小生成树算法。令边权和最小,那么该图一定不存在环,且为树形。
最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。
Prim算法简述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew= {x},其中x为集合V中的任一节点(起始点),Enew= {},为空;
3).重复下列操作,直到Vnew= V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树.
时间复杂度: O(n*n);
Prim算法的时间复杂度都是和边无关的,都是O(n*n),所以它适合用于边稠密的网建立最小生成树。
Kruskal算法简述
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
时间复杂度为:O(eloge);
其中e为边的条数,因此它相对Prim算法而言,更适用于边稀疏的网。