Cards

Team Work
计算 a n s = ∑ r = 1 n C n r r k ans=\sum_{r=1}^nC_n^rr^k ans=r=1nCnrrk

首先,有 ( 1 + x ) n = ∑ r = 0 n C n r x r (1+x)^n=\sum_{r=0}^nC_n^rx^r (1+x)n=r=0nCnrxr

op1:微分再乘以x.
n x ( 1 + x ) n − 1 = ∑ r = 1 n C n r r x r nx(1+x)^{n-1}=\sum_{r=1}^nC_n^rrx^r nx(1+x)n1=r=1nCnrrxr
重复1:

n x ( 1 + x ) n − 1 + n ( n − 1 ) x 2 ( 1 + x ) n − 2 = ∑ r = 1 n C n r r 2 x r nx(1+x)^{n-1}+n(n-1)x^2(1+x)^{n-2}=\sum_{r=1}^nC_n^rr^2x^r nx(1+x)n1+n(n1)x2(1+x)n2=r=1nCnrr2xr

n x ( 1 + x ) n − 1 + ( 1 + 2 ) n ( n − 1 ) x 2 ( 1 + x ) n − 2 + n ( n − 1 ) ( n − 2 ) x 3 ( 1 + x ) n − 3 = ∑ r = 1 n C n r r 3 x r nx(1+x)^{n-1}+(1+2)n(n-1)x^2(1+x)^{n-2}+n(n-1)(n-2)x^3(1+x)^{n-3}=\sum_{r=1}^nC_n^rr^3x^r nx(1+x)n1+(1+2)n(n1)x2(1+x)n2+n(n1)(n2)x3(1+x)n3=r=1nCnrr3xr
⋯ \dotsb

d p [ k ] [ b ] = x b ( 1 + x ) n − b dp[k][b]=x^b(1+x)^{n-b} dp[k][b]=xb(1+x)nb为k次op1以后的 x b ( 1 + x ) n − b x^b(1+x)^{n-b} xb(1+x)nb的系数.

x ∗ ( d p [ k ] [ b ] ∗ x b ( 1 + x ) n − b ) ′ x*(dp[k][b]*x^b(1+x)^{n-b})' x(dp[k][b]xb(1+x)nb)

= d p [ k ] [ b ] ∗ b ∗ x b ( 1 + x ) n − b + d p [ k ] [ b ] ∗ ( n − b ) ∗ x b + 1 ( 1 + x ) n − ( b + 1 ) =dp[k][b]*b*x^b(1+x)^{n-b}+dp[k][b]*(n-b)*x^{b+1}(1+x)^{n-(b+1)} =dp[k][b]bxb(1+x)nb+dp[k][b](nb)xb+1(1+x)n(b+1)

= d p [ k + 1 ] [ b ] ∗ x b ( 1 + x ) n − b + d p [ k + 1 ] [ b + 1 ] ∗ x b + 1 ( 1 + x ) n − ( b + 1 ) =dp[k+1][b]*x^b(1+x)^{n-b}+dp[k+1][b+1]*x^{b+1}(1+x)^{n-(b+1)} =dp[k+1][b]xb(1+x)nb+dp[k+1][b+1]xb+1(1+x)n(b+1)
所以
d p [ k + 1 ] [ b ] + = d p [ k ] [ b ] ∗ b dp[k+1][b]+=dp[k][b]*b dp[k+1][b]+=dp[k][b]b

d p [ k + 1 ] [ b + 1 ] + = d p [ k ] [ b ] ∗ ( n − b ) dp[k+1][b+1]+=dp[k][b]*(n-b) dp[k+1][b+1]+=dp[k][b](nb)

= > => =>
d p [ k ] [ b ] = d p [ k − 1 ] [ b ] ∗ b + d p [ k − 1 ] [ b − 1 ] ∗ ( n − ( b − 1 ) ) , n < = k dp[k][b]=dp[k-1][b]*b+dp[k-1][b-1]*(n-(b-1)),n<=k dp[k][b]=dp[k1][b]b+dp[k1][b1](n(b1)),n<=k
d p [ k ] [ b ] = d p [ k − 1 ] [ b ] ∗ b , k > n dp[k][b]=dp[k-1][b]*b,k>n dp[k][b]=dp[k1][b]b,k>n

d p [ i ] [ j ] = 0 , d p [ 0 ] [ 0 ] = 1 dp[i][j]=0, dp[0][0]=1 dp[i][j]=0,dp[0][0]=1
令x=1
a n s = ∑ i = 0 n d p [ k ] [ i ] ∗ 2 n − i , k ≤ n ans=\sum_{i=0}^n dp[k][i]*2^{n-i},k\le n ans=i=0ndp[k][i]2ni,kn

a n s = ∑ i = 0 n d p [ k ] [ i ] ∗ 2 n − i + ∑ i = n + 1 k d p [ k ] [ i ] , k > n ans=\sum_{i=0}^n dp[k][i]*2^{n-i}+\sum_{i=n+1}^kdp[k][i],k> n ans=i=0ndp[k][i]2ni+i=n+1kdp[k][i],k>n

ll dp[5005];
int main() {
    ll n,k;
    cin>>n>>k;
    dp[0]=1;
    for(int i=1;i<=min(k,n);++i){
        for(int j=i;j;--j)
            dp[j]=(dp[j]*j%mod+dp[j-1]*(n-j+1)%mod)%mod;
        dp[0]=0;
    }
    for(int i=n+1;i<=k;++i){
        for(int j=n;j;--j)
            dp[j]=(dp[j]*j%mod+dp[j-1]*(n-j+1)%mod)%mod;
        for(int j=n+1;j<=i;++j)
            dp[j]=dp[j]*j%mod;
    }
    ll ans=0,z=qpow(2,max(n-k,(ll)0));
    for(int i=min(k,n);i>=0;--i){
        ans=(ans+dp[i]*z%mod)%mod;
        z=z*2%mod;
    }
    for(int i=k;i>n;--i)ans=(ans+dp[i])%mod;
    cout<<ans;
    return 0;
}

cf-Cards
Consider the following experiment. You have a deck of m cards, and exactly one card is a joker. n times, you do the following: shuffle the deck, take the top card of the deck, look at it and return it into the deck.

Let x be the number of times you have taken the joker out of the deck during this experiment. Assuming that every time you shuffle the deck, all m! possible permutations of cards are equiprobable, what is the expected value of xk? Print the answer modulo 998244353.

Input
The only line contains three integers n, m and k ( 1 ≤ n , m < 998244353 , 1 ≤ k ≤ 5000 ) . (1≤n,m<998244353, 1≤k≤5000). (1n,m<998244353,1k5000).

Output
Print one integer — the expected value of xk, taken modulo 998244353 (the answer can always be represented as an irreducible fraction a b ab ab, where b mod 998244353≠0; you have to print a ⋅ b − 1 m o d 998244353 ) . a⋅b^{-1}mod998244353). ab1mod998244353).

m张卡牌中只有一张鬼,抽取n次,每次抽到后放回打乱,设n次中抽到x次鬼, x k x^k xk的期望值是多少?

一次抽到鬼的概率是 1 m \frac{1}{m} m1

a n s = ∑ r = 1 n C n r ( 1 m ) r ( 1 − 1 m ) n − r r k ans=\sum_{r=1}^nC_n^r(\frac{1}{m})^r(1-\frac{1}{m})^{n-r}r^k ans=r=1nCnr(m1)r(1m1)nrrk

= 1 m n ∑ r = 1 n ( m − 1 ) n − r r k =\frac{1}{m^n}\sum_{r=1}^n(m-1)^{n-r}r^k =mn1r=1n(m1)nrrk

( x + m − 1 ) n = ∑ r = 0 n ( m − 1 ) n − r x r (x+m-1)^n=\sum_{r=0}^n(m-1)^{n-r}x^r (x+m1)n=r=0n(m1)nrxr

k次求导乘x即可.

ll dp[5005][5005];
int main() {
    ll n,m,k;
    cin>>n>>m>>k;
    dp[0][0]=1;
    for(int i=1;i<=min(k,n);++i){
        for(int j=1;j<=i;++j)
            dp[i][j]=(dp[i-1][j]*j%mod+dp[i-1][j-1]*(n-j+1)%mod)%mod;
    }
    for(int i=n+1;i<=k;++i){
        for(int j=1;j<=n;++j)
            dp[i][j]=(dp[i-1][j]*j%mod+dp[i-1][j-1]*(n-j+1)%mod)%mod;
        for(int j=n+1;j<=i;++j)
            dp[i][j]=dp[i-1][j]*j%mod;
    }
    ll ans=0;
    for(int j=0;j<=min(k,n);++j)
        ans=(ans+dp[k][j]*qpow(m,n-j)%mod)%mod;
    for(int j=n+1;j<=k;++j)
        ans=(ans+dp[k][j])%mod;
    cout<<ans*qpow(qpow(m,n),mod-2)%mod;
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值