李沐09 Softmax函数_损失函数_图片分类数据集——自学笔记

分类和回归的区别

回归:估计一个连续值
分类:预测一个离散类别

回归:单连续数值输出、自然区间、跟真实值的区别作为损失
分类:多个输出、输出i是预测为第i类置信度

校验比例

对类别进行一位有效编码,y=[y1, y2, y3,…,yn]^T, {yi=1 if i=y} or {yi=0 otherwise}
使用均方损失训练,最大值为预测y=argmax oi
需要更置信的识别正确类(大余量)oy-oi>=∆(y,i)
输出匹配概率
y ̂=softmax(o)
y ̂i=exp(oi)/∑_k〖exp⁡(ok)〗
概率y和y^的区别作为损失

Softmax和交叉熵损失

交叉熵用于衡量两个概率的区别H(P,Q)=∑_i-pi * log(qi)
将它作为损失
l(y,y ̂)=-∑_i yi* logy^i
其梯度是真实概率和预测概率的区别:∂oil(y,y^)=softmax(o)i-yi

总结

Softmax回归是一个多类分类模型
使用Softmax操作子得到每个类的预测置信度
使用交叉熵来衡量预测和标号的区别

损失函数

以上全部回去看李沐的课件!!!

读取多类分类的数据集

  1. 图像分类数据集:Fashion-MNIST 数据集
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

通过框架中的内置函数将fashion-MNIST数据集下载并读取到内存中

# 通过ToTensors实例将图像数据从PIL类型变换成32位浮点数格式
# 并除以255使得所有像素数值均在0到1之间

trans=transforms.ToTensor()
mnist_train=torchvision.datasets.FashionMNIST(root='../data',train=True,
                                             transform=trans,download=True)
mnist_test=torchvision.datasets.FashionMNIST(root='../data',train=False,
                                            transform=trans,download=True)     # 下载测试集,所以train=False

len(mnist_train),len(mnist_test)   # 6w张作为训练集,1w张作为测试集
(60000, 10000)
mnist_train[0][0].shape   # 第0个example的形状:torch的形状,1是rgb中表示黑白,长28,宽28
torch.Size([1, 28, 28])

两个可视化数据集的函数

def get_fashion_mnist_labels(labels):
    '''返回Fashion-MNIST数据集的文本标签'''
    text_labels=[
        't-shirt','trouser','pullover','dress','coat','sandal','shirt'
        ,'sneaker','bag','ankle boot']
    return [text_labels[int(i)] for i in labels]

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    '''Plot a list of images.图片显示'''
    figsize=(num_cols*scale,num_rows*scale)
    _,axes=d2l.plt.subplots(num_rows,num_cols,figsize=figsize)
    axes=axes.flatten()
    for i ,(ax,img) in enumerate(zip(axes,imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
             # PIL图片
            ax.imshow(img)
X,y=next(iter(data.DataLoader(mnist_train,batch_size=18)))  # batch_size可以大小固定是18的批量数据
show_images(X.reshape(18,28,28),2,9,titles=get_fashion_mnist_labels(y))  # reshape数据里18是batch_size

在这里插入图片描述

batch_size=256

def get_dataloader_workers():
    '''使用2个进程来读取的数据'''   # 返回进程数,可根据cpu选择,时间越短越高效
    return 2

train_iter=data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers())

timer=d2l.Timer()
for X,y in train_iter:
    continue
f'{timer.stop():.2f}sec'  # 读一遍数据集的时间
'1.83sec'

定义load_data_fashion_mnist函数: 定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。 这个函数返回训练集和验证集的数据迭代器。 此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

def load_data_fashion_mnist(batch_size,resize=None):
    '''下载Fashion-MNIST数据集,然后将其加载到内存中。'''
    trans=[transforms.ToTensor()]
    if resize:
        trans.insert(0,transforms.Resize(resize))
    trans=transforms.Compose(trans)
    mnist_train=torchvision.datasets.FashionMNIST(root='../data',train=True,transform=trans,download=True)
    mnist_test=torchvision.datasets.FashionMNIST(root='../data',train=True,transform=trans,download=True)
    
    return (data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

通过指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能。

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64

Softmax回归的从零开始实现

import torch
from IPython import display
from d2l import torch as d2l

batch_size=256   # 每次随机读256张图片
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

将展平每个图像,将它们视为长度为784的向量。因为我们的数据集有10个类别,所以网络输出维度是10

num_inputs=784  # 之前得知每张照片长28、宽28,展平成为向量后28*28=784
num_outputs=10  # 10个类别

w=torch.normal(0,0.01,size=(num_inputs,num_outputs), requires_grad=True)
b=torch.zeros(num_outputs,requires_grad=True)

定义softmax操作:给定一个矩阵X,可以对所有元素求和

X=torch.tensor([[1.0,2.0,3.0],[4.0,5.0,6.0]])
X.sum(0,keepdim=True),X.sum(1,keepdim=True)  # 按照维度0和维度1求和
(tensor([[5., 7., 9.]]),
 tensor([[ 6.],
         [15.]]))

实现Softmax:Softmax公式

def softmax(X):
    X_exp=torch.exp(X)
    partition=X_exp.sum(1,keepdim=True)  # 按照维度1对X_exp求和
    return X_exp/partition  # 应用广播机制

验证是否正确:将每个元素变成一个非负数,此外,依据概率原理,每行总和为1

X=torch.normal(0,1,(2,5))  # 均值为0,方差为1的2行5列的矩阵X,正态分布
X_prob=softmax(X)
X_prob,X_prob.sum(1)
(tensor([[0.1193, 0.5515, 0.1724, 0.0224, 0.1344],
         [0.1086, 0.4422, 0.1761, 0.1785, 0.0946]]),
 tensor([1.0000, 1.0000]))

实现softmax回归模型

def net(X):
    return softmax(torch.matmul(X.reshape((-1,w.shape[0])),w)+b)  # reshape成2d的矩阵

创建一个数据y_hat,其中包含2个样本在3个类别的预测概率,使用y作为y_hat中概率的索引

y=torch.tensor([0,2])
y_hat=torch.tensor([[0.1,0.3,0.6],[0.3,0.2,0.5]])
y_hat[[0,1],y]  # y_hat[[a,b],[c,d]]取y_hat的第a,c个元素和第b,d个元素
                # 即取出y_hat[0][0]-->0.1 和 y_hat[1][2]-->0.5
tensor([0.1000, 0.5000])

交叉熵损失函数

def cross_entropy(y_hat,y):   # y_hat是预测,y是真实标号
    return -torch.log(y_hat[range(len(y_hat)),y])  

cross_entropy(y_hat,y)
tensor([2.3026, 0.6931])

将预测类别与真实y元素进行比较

def accuracy(y_hat,y):
    '''计算预测正确的数量'''
    if len(y_hat.shape)>1 and y_hat.shape[1]>1:  # if 后面第一个张量是否大于1维,第二个判断第二个维度是否大于1
        y_hat=y_hat.argmax(axis=1)
    cmp=y_hat.type(y.dtype)==y   # cmp是布尔型张量,True表示预测正确,False表示预测错误,转换成整型就是1和0
    return float(cmp.type(y.dtype).sum())

accuracy(y_hat,y)/len(y)
0.5

评估任意模型net的精度

def evaluate_accuracy(net,data_iter):
    '''计算在指定数据集上模型的精度。'''
    if isinstance(net,torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric=Accumulator(2) # 正确预测数,预测总量,累加器
    for X,y in data_iter:
        metric.add(accuracy(net(X),y),y.numel())  # accuracy(net(X),y)预测正确的数,y.numel
    return metric[0]/metric[1]
class Accumulator:
    '''在n个变量上累加'''
    def __init__(self,n):
        self.data=[0,0]*n
        
    def add(self,*args):
        self.data=[a+float(b) for a,b in zip(self.data,args)]
        
    def reset(self):
        self.data=[0,0]*len(self.data)
        
    def __getitem__(self,idx):
        return self.data[idx]

evaluate_accuracy(net,test_iter)
0.0996

Softmax回归的训练

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net,torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator, 它能够简化本书其余部分的代码。

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

接下来我们实现一个训练函数。
它会在train_iter访问到的训练数据集上训练一个模型net。
该训练函数将会运行多个迭代周期(由num_epochs指定)。
在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。
利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc
lr = 0.1

def updater(batch_size):
    return d2l.sgd([w, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

在这里插入图片描述

预测标签

def predict_ch3(net,test_iter,n=6):
    '''预测标签'''
    for X,y in test_iter:
        break
    trues=d2l.get_fashion_mnist_labels(y)
    preds=d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles=[true+'\n'+pred for true, pred in zip(trues,preds)]
    d2l.show_images(X[0:n].reshape((n,28,28)),1,n,titles=titles[0:n])
    
predict_ch3(net,test_iter)

在这里插入图片描述

Softmax简洁实现

通过深度学习框架的高级API可以使得softmax回归更方便

import torch
from torch import nn
from d2l import torch as d2l

batch_size=256
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

softmax回归的输出层是一个全连接层

# pytorch不会隐式地调整输入的形状
# 因此,重新定义展平层(Flatten)在线性层前调整网络输入的形状
net=nn.Sequential(nn.Flatten(),nn.Linear(784,10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)  # 标准差0.01
        
net.apply(init_weights);

在交叉熵损失函数中传递未归一化的预测,并同时计算softmax及其对数

loss=nn.CrossEntropyLoss(reduction='none')

使用学习率为0.1的小批量随机梯度下降作为优化算法

trainer= torch.optim.SGD(net.parameters(),lr=0.1)

调用之前定义的训练函数来训练模型

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

  • 29
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值