3.6. softmax回归的从零开始实现|简洁实现

  • 从零开始
    0、下载数据集到内存
    1、初始化模型参数
    2、定义softmax
    3、定义模型
    4、定义损失函数
    5、计算分类精度,即正确的数量
    6、训练
from tkinter.tix import Y_REGION
from turtle import update
from pyparsing import nums
import torch
from IPython import display
from d2l import torch as d2l

# 0、下载数据集到内存
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 1、初始化模型参数
num_inputs = 784 # 28 * 28的图像展开的像素数量
num_outputs = 10 # 分类后的类别数量

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

# 2、定义softmax
def softmax(X): # 假设X.shape [2,5]
    X_exp = torch.exp(X) # X_exp.shape [2, 5]
    partition = X_exp.sum(1, keepdim=True) # partition.shape [2, 1]
    return X_exp / partition # 广播机制 [2, 5] / [2, 1] -> [2, 5] / [2, 5]

# test
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
print(X_prob, X_prob.sum(1))
# 现在虽然看起来正确,但是矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,这里没有采取措施来防止这点。

# 3、定义模型
def net(X):
    # 使用reshape函数将每张原始图像展平为向量,也就是28*28=784
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

# 4、定义损失函数
def cross_entropy(y_hat, y):
    # 公式是-y*log(y_hat),其中y不是0就是1,只要记录y=1的那个类别的预测概率就行。
    return -torch.log(y_hat[range(len(y_hat)), y]) 
# y_hat[[row1, row2,...],[col1, col2,...]]里面有两个同长度的列表,相当于 [y_hat[row1,col1], y_hat[row2,col2]...]
# 假设y_hat包含2个样本在3个类别的预测概率, 以及它们对应的标签y。
# test
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.3, 0.5]])
print(y_hat[[0, 1], y]) # 高级用法差点没把我整废
print('examples cross_entropy:',cross_entropy(y_hat, y) )

# 5、计算分类精度,即正确的数量
def accuracy(y_hat, y):
    # 如果y_hat是矩阵,那么假定第二个维度存储每个类的预测分数。 
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        # 使用argmax获得每行中最大元素的索引来获得预测类别
        y_hat = y_hat.argmax(axis=1)
    # 由于等式运算符“==”对数据类型很敏感, 因此我们将y_hat的数据类型转换为与y的数据类型一致。
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())
# test
print('examples accuracy rate:', accuracy(y_hat, y) / len(y))


class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

def evaluate_accuracy(net, data_iter):
    if isinstance(net, torch.nn.Module):
        net.eval() # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

print('test accuracy rate:', evaluate_accuracy(net, test_iter))

# 6、训练
def train_epoch_ch3(net, train_iter, loss, updater):
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)  
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用Pytorch提供的优化器和损失函数
            updater.zero_grad()
            l.mean().backward() 
            # pytorch的损失函数应该是求了sum的,再求mean(),看了李沐老师的视频,应该是为了让metric.add()统一写法。
            updater.step()
        else:
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) # 还是有些模糊
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    d2l.plt.ion() # 让VSCode可以显示图片加的;开启交互模式
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter) # 放心,在测试用每个迭代后更新的权重预测结果时,用了torch.no_grad(),当前模型看不到测试集的数据。
        animator.add(epoch + 1, train_metrics + (test_acc,))
        d2l.plt.pause(0.2) # 暂停
    d2l.plt.ioff() # 关闭交互模式
    d2l.plt.show() # 阻塞模式,需要手动关闭才能运行下去
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
# 7、预测
def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break # 取出第一个批次的数据测试一下
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
    d2l.plt.show()

predict_ch3(net, test_iter)

运行结果:
在这里插入图片描述
test acc差不多0.83的准确率
在这里插入图片描述
在这里插入图片描述
画图代码参考Python matplotlib.pyplot 绘制动态图

  • 简洁实现
    1、数据迭代器
    2、定义网络模型
    3、初始化参数
    4、定义损失函数,中有softmax了
    5、优化算法:更新参数的方法
    6、训练
import torch
from torch import nn
from d2l import torch as d2l
# 1、数据迭代器
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 2、定义网络模型
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
# 先用nn.Flatten()来调整网络输入的形状,对应从零开始的.reshape()
# 3、初始化参数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights) # 将Linear层以均值0和标准差0.01随机初始化权重。

# 4、定义损失函数,中有softmax了
loss = nn.CrossEntropyLoss(reduction='none')
# nn.CrossEntropyLoss = nn.softmax + nn.log + nn.NLLLoss,也就是api自带的的交叉熵损失函数已经把softmax自动算了。
# 这里的loss后面参数要加reduction='none',不然损失会求平均除256最后画图不显示
# reduction 该参数在新版本中是为了取代size_average和reduce参数的。
#    它共有三种选项'elementwise_mean','sum'和'none'。
#    'elementwise_mean'为默认情况,表明对N个样本的loss进行求平均之后返回(相当于reduce=True,size_average=True);
#    'sum'指对n个样本的loss求和(相当于reduce=True,size_average=False);
#    'none'表示直接返回n分样本的loss(相当于reduce=False)

# 5、优化算法:更新参数的方法
trainer = torch.optim.SGD(net.parameters(), lr = 0.1)

# 6、训练
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)



运行结果:
在这里插入图片描述
没有看到loss线,看了下评论区:
在这里插入图片描述
在这里插入图片描述
试了不行,然后将torch.py中train_epoch_ch3函数中的对应部分改成从零开始时写的部分。
在这里插入图片描述
有了:
在这里插入图片描述

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
softmax回归从零开始实现可以分为以下几个步骤: 1. 获取并读取数据:首先,我们需要获取训练数据集和测试数据集。然后,我们可以通过数据加载器将数据集转换为可供模型使用的张量格式。 2. 初始化模型参数:我们需要定义模型的参数,其中包括权重矩阵w和偏置向量b,并将它们初始化为随机值。 3. 定义模型:softmax回归的模型可以表示为线性变换和softmax操作的组合。我们可以使用矩阵乘法和加法运算来实现线性变换,并使用softmax函数将输出转换为概率分布。 4. 定义损失函数:softmax回归使用交叉熵损失函数来衡量预测结果与真实标签之间的差异。交叉熵损失函数可以通过计算预测概率分布和真实标签的对数似然来得到。 5. 定义优化算法:我们可以使用梯度下降算法来最小化损失函数。梯度下降算法的核心思想是通过计算损失函数关于模型参数的梯度来更新参数的值。 6. 训练模型:在训练过程中,我们需要将输入数据传递给模型,计算预测结果,并根据损失函数的值来更新模型参数。这个过程可以通过多次迭代来完成。 以下是一个伪代码示例: ``` # 步骤1:获取并读取数据 data_loader = DataLoader(...) train_data, test_data = data_loader.load_data(...) # 步骤2:初始化模型参数 w = torch.randn(...) b = torch.zeros(...) # 步骤3:定义模型 def model(X): return softmax(torch.matmul(X, w) + b) # 步骤4:定义损失函数 def loss(y_hat, y): return cross_entropy(y_hat, y) # 步骤5:定义优化算法 def optimize(params, lr): params -= lr * params.grad # 步骤6:训练模型 for epoch in range(num_epochs): for X, y in train_data: # 前向传播 y_hat = model(X) # 计算损失 l = loss(y_hat, y) # 反向传播 l.backward() # 更新参数 optimize([w, b], lr) # 清零梯度 w.grad.zero_() b.grad.zero_() # 相关问题:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值