【Dive into Deep Learning |第三章 线性神经网络】动手学深度学习(李沐)3.6 softmax回归的从零开始(代码含注释)

数据集简介

MNIST数据集 (LeCun et al., 1998) 是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。 我们将使用类似但更复杂的Fashion-MNIST数据集 (Xiao et al., 2017)。
通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中

def load_data_fashion_mnist(batch_size,resize=None):
    trans=[transforms.ToTensor()]
    if resize:
        trans.insert(0,transforms.Resize(resize))
    trans=transforms.Compose(trans)
    mnist_train=torchvision.datasets.FashionMNIST(root="../data",
                                            train=True,transform=trans,
                                            download=True)
    mnist_test=torchvision.datasets.FashionMNIST(root="../data",
                                            train=False,transform=trans,
                                            download=True)
    return (data.DataLoader(mnist_train,batch_size,shuffle=True,
                          num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test,batch_size,shuffle=True,
                          num_workers=get_dataloader_workers())
           )

在这里插入图片描述
每个输入图像的高度和宽度均为28像素。Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。
了解完数据集之后,我们直接进入正题。

实验步骤

加载数据集

首先第一步导包

import torch 
from IPython import display #于在IPython环境中显示各种内容,例如图像、音频、视频、HTML、LaTeX等。通过导入该模块并使用其中的display函数,可以将这些内容直接嵌入到IPython Notebook或Jupyter Notebook中。
from d2l import torch as d2l

引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。

batch_size=256  #小批量的大小
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size) #加载数据,前面定义的函数

初始化模型参数

原始数据集中的每个样本都是28*28的图像。 这里将展平每个图像,把它们看作长度为784的向量。

#始数据集中的每个样本都是的28*28图像。将展开每个图像,将它们视为长度为784的向量。
#因为数据集中有10个类别,所以网络输出维度位10
num_inputs = 784
num_outputs = 10
#初始化W,b的参数,W符合N(0,0.01)大小为784*10的矩阵,偏置b构成一个1*10的行向量,初始化为0
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

定义softmax操作

回顾sum运算符

#回顾sum运算符
#X.sum(0, keepdim=True)表示对X按列进行求和,keepdim=True保持结果的维度与原张量一致。结果是一个1x3的张量
#X.sum(1, keepdim=True)表示对X按行进行求和,keepdim=True保持结果的维度与原张量一致。结果是一个2x1的张量

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True) 

在这里插入图片描述

实现softmax由三个步骤组成:

  1. 对每个项求幂(使用exp);
  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
  3. 将每一行除以其规范化常数,确保结果的和为1。

在查看代码之前,我们回顾一下这个表达式:
在这里插入图片描述
按照表达式定义softmax操作

def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True) #按行对X进行求和,保持维度一致
    return X_exp / partition  # 这里应用了广播机制

对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1。

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

在这里插入图片描述

定义模型


#定义模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
    #使用reshape函数将每张原始图像展平为向量。

定义损失函数

创建一个y_hat,其中包含两类样本在3个类别中的预测概率,使用y作为y_hat中概率的索引

#创建一个y_hat,其中包含两类样本在3个类别中的预测概率,使用y作为y_hat中概率的索引
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

我们选择第一个样本中第一个类的概率和第二个样本中第三个类的概率。
在这里插入图片描述
交叉熵:
在这里插入图片描述
y的真实值类似于[0,1,0,0],所以含0的那一项与log(y_hat)相乘直接就没有了,所以整个式子可以化简为:
在这里插入图片描述
所以我们只需一行代码就可以实现交叉熵损失函数。

#实现交叉熵损失函数
def cross_entropy(y_hat,y):
    return -torch.log(y_hat[range(len(y_hat)),y]) #类似于上一个代码块,使用y作为y_hat中概率的索引
cross_entropy(y_hat,y)

在这里插入图片描述

分类精度

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:  #是否为矩阵
        y_hat = y_hat.argmax(axis=1)  #argmax获得每行中最大元素的索引(下标)
    cmp = y_hat.type(y.dtype) == y  #得到一个bool型矩阵
    return float(cmp.type(y.dtype).sum())  #False为0,True为1,计算预测正确的数量,即1的数量

分类精度=分类正确的数量/样本总数

accuracy(y_hat,y)/len(y)

在这里插入图片描述
同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module): #检查net是否为torch.nn.Module的实例
        net.eval()  # 将模型设置为评估模式
    #创建Accumulator类,传入的参数是 2,意味着创建的 metric 对象将用于累加两个变量
    #随着数据的读取,一个用于累加预测的总数,另一个用于累加预测正确的数
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
evaluate_accuracy(net, test_iter)

训练

首先,我们定义一个函数来训练一个迭代周期。 请注意,updater是更新模型参数的常用函数,它接受批量大小作为参数。

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    # updater是更新模型参数的常用函数,它接受批量大小作为参数
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):  #同样,这里是为了检查net是否为torch.nn.Module的实例
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)  #用于累加三个变量:训练损失总和、训练准确度总和、样本数
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)  
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):#检查updater是否为torch.optim.Optimizer的实例
            #torch.optim.Optimizer是PyTorch 中的一个优化器基类,用于实现不同的优化算法来更新模型的参数。
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad() # 清零之前的梯度
            l.mean().backward() #反向传播计算梯度
            updater.step() #更新参数
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

定义一个在动画中绘制数据的实用程序类Animator

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    #Animator用于可视化训练过程中的损失和准确率。
    #这个对象设置了横轴为训练轮数(epoch),纵轴范围为 0.30.9,并包含了训练损失、训练准确率和测试准确率的图例。
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc
lr = 0.1 #设置学习率为0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

开始训练

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

在这里插入图片描述

预测

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

在这里插入图片描述

总结

训练softmax回归循环模型与训练线性回归模型非常相似:先读取数据,再定义模型和损失函数,然后使用优化算法训练模型。大多数常见的深度学习模型都有类似的训练过程。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值