一、卷积神经网络CNN与一般神经网络的区别和共同点
相同点:卷积神经网络和一般神经网络都是一种反向传播算法来训练的
不同点:网络结构不同,卷积神经网络的网络连接具有局部连接、参数共享的特点。局部连接:是相对于普通神经网络的全连接层而言的,是指这一层的某个节点只与上一层的部分节点相连。数据共享:是指一层中多个节点的连接共享相同的一组参数。
二、卷积神经网络的组要组成
1、卷积层
卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
2、池化层
它实际上是一种形式的下采样。有多种不同形式的非线性池化函数,而其中最大池化和平均采样是最常见的,主要作用,将一个分辨率高的图片转换为分辨率低的图片,并且可以缩小最后全连接层中的节点个数。
3、全连接层
与普通神经网络一样的连接方式,一般都在最后几层。
三、LeNet-5
共5层,两个卷积+池化层,3个全连接层
输入图片为3232,filter 都为55 ,三个全连接层分别为1201,841,10*1
特点:
四、AlexNet
8层CONV1+MAXPOOL1,CONV2+MAXPOOL2,CONV3,CONV4,CONV5+MAX
POOL3,FC6:4096,FC7:4096,FC8:1000
新特点:
五、VGG
几种常用的卷积网络总结
最新推荐文章于 2024-05-27 09:20:59 发布