参考链接:https://blog.csdn.net/qq_41117236/article/details/80986564
01背包
hdu2602
题意:
n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品只能拿一次,给你容量为m的背包,怎样才能取得最大价值?
状态转移方程
dp[ j ] = max ( dp[ j ] , dp[ j - w[i] ] + v[ i ] );
for(i = 1 ; i <= n ; i++)
for(j = m ; j >= w[ i ] ; j--)
dp[ j ] = max(dp[ j ],dp[ j - w[ i ] ] + v[ i ]) ;
dp[j]用来记录当容量为j时的可行取法的最大价值。
int dp[1010];
int val[1010],vol[1010];
int main()
{
int t;cin>>t;
while(t--)
{
memset(dp,0,sizeof(dp));
int n,v;cin>>n>>v;
for(int i=1;i<=n;i++)cin>>val[i];
for(int i=1;i<=n;i++)cin>>vol[i];
for(int i=1;i<=n;i++)
{
for(int j=v;j>=vol[i];j--)
{
dp[j]=max(dp[j],dp[j-vol[i]]+val[i]);
}
}
cout<<dp[v]<<endl;
}
return 0;
}
完全背包
hdu1114
n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品能拿无限次,给你容量为m的背包,怎样才能取得最大价值?
状态转移方程
dp[ j ] = max ( dp[ j ] , dp[ j - w[i] ] + v[ i ] );
for(i = 1 ; i <= n ; i++)
for(j = w[ i ] ; j <= m ; j++) //01为倒序
dp[ j ] = max(dp[ j ],dp[ j - w[ i ] ] + v[ i ]) ;
int dp[10010];
int v[10010],w[10010];
int main()
{
int t;scanf("%d",&t);
while(t--)
{
memset(dp,inf,sizeof(dp));
dp[0]=0;
int e,f;scanf("%d%d",&e,&f);
int weigh=f-e;
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&v[i],&w[i]);
for(int i=1;i<=n;i++)
{
for(int j=w[i];j<=weigh;j++)
{
dp[j]=min(dp[j],dp[j-w[i]]+v[i]);
}
}
if(dp[weigh]>=inf)printf("This is impossible.\n");
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[weigh]);
}
return 0;
}
n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品只能拿 c[i] 次,给你容量为m的背包,怎样才能取得最大价值?