背包合集

参考链接:https://blog.csdn.net/qq_41117236/article/details/80986564

01背包

hdu2602

题意:

n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品只能拿一次,给你容量为m的背包,怎样才能取得最大价值?

状态转移方程

dp[ j ] = max ( dp[ j ] , dp[ j - w[i] ] + v[ i ] );

for(i = 1 ; i <= n ; i++)
       for(j = m ; j >= w[ i ] ; j--)
             dp[ j ] = max(dp[ j ],dp[ j - w[ i ] ] + v[ i ]) ;

dp[j]用来记录当容量为j时的可行取法的最大价值。

int dp[1010];
int val[1010],vol[1010];
int main()
{
    int t;cin>>t;
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        int n,v;cin>>n>>v;
        for(int i=1;i<=n;i++)cin>>val[i];
        for(int i=1;i<=n;i++)cin>>vol[i];
        for(int i=1;i<=n;i++)
        {
            for(int j=v;j>=vol[i];j--)
            {
                dp[j]=max(dp[j],dp[j-vol[i]]+val[i]);
            }
        }
        cout<<dp[v]<<endl;
    }
    return 0;
}

完全背包

hdu1114

n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品能拿无限次,给你容量为m的背包,怎样才能取得最大价值?

状态转移方程

dp[ j ] = max ( dp[ j ] , dp[ j - w[i] ] + v[ i ] );

for(i = 1 ; i <= n ; i++)
      for(j = w[ i ] ; j <= m ; j++)  //01为倒序

             dp[ j ] = max(dp[ j ],dp[ j - w[ i ] ] + v[ i ]) ;

int dp[10010];
int v[10010],w[10010];
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        memset(dp,inf,sizeof(dp));
        dp[0]=0;
        int e,f;scanf("%d%d",&e,&f);
        int weigh=f-e;
        int n;scanf("%d",&n);
        for(int i=1;i<=n;i++)scanf("%d%d",&v[i],&w[i]);
        for(int i=1;i<=n;i++)
        {
            for(int j=w[i];j<=weigh;j++)
            {
                dp[j]=min(dp[j],dp[j-w[i]]+v[i]);
            }
        }
        if(dp[weigh]>=inf)printf("This is impossible.\n");
        else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[weigh]);
    }
    return 0;
}

n种物品,每个物品有自己的重量 w[i] 和价值 v[i] ,如果每个物品只能拿 c[i] 次,给你容量为m的背包,怎样才能取得最大价值?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值