- kaggle实战—泰坦尼克(一、数据分析)
- kaggle实战—泰坦尼克(二、数据清洗及特征处理)
- kaggle实战—泰坦尼克(三、数据重构)
- kaggle实战—泰坦尼克(四、数据可视化)
- kaggle实战—泰坦尼克(五、模型搭建-模型评估)
前言
相信大家都有队pandas,numpy等数据科学库有一定了解,其中不乏有很多人有专门刷过相关课程或者看多相关书籍,例如《python for data analysis》。但是在实操过程中有很多函数还是得看着官方文档来进行敲写,既费时又费力 。最近刚好datawhale发起一个相关打卡活动——实战,我就报名参加了。(ps:极力推荐这本书,大家可以去网上搜索电子版,或者也可以关注微信公众【浩波的笔记】回复data analysis来获取。
)
这次实践又比较偏模型和实战(完成kaggle上泰坦尼克的任务),直接给你一个任务,让你去完成,上手难度比较大,但是它的实战性可以让你对于什么是数据挖掘,以及数据挖掘的逻辑有很好的把握。所以有没有这样一门课,以项目为主线,将知识点孕育其中,通过边学,边做以及边被引导的方式来使学习效果达到更好,学完之后既能掌握pandas等的知识点又能掌握数据分析的大致思路和流程。通过调查发现,市面上这样的目好像没有可以完全符合这样的标准(失望.jpg)。
安排(对应三篇博客):
- 第一部分:我们获得一个要分析的数据,我要学会如何加载数据,查看数据,然后学习Pandas一些基础操
作,最后开始尝试探索性的数据分析。 - 第二部分:当我们可以比较熟练的操作数据并认识这个数据之后,我们需要开始数据清洗以及重构,将原始数据变为一个可用好用的数据,为之后放入模型做准备
- 第三部分:我们根据任务需求不同,要考虑建立什么模型,我们接触流行的sklearn库,建立模型。然后一个模型的好坏,我们是需要评估的,之后我们会引入模型评估的一些改变和实现。
数据加载
项目介绍
目的: 用机器学习创建一个模型,预测哪些乘客在泰坦尼克号沉船事故中幸存下来。
载入数据
数据集下载 https://www.kaggle.com/c/titanic/overview
任务一:导入numpy和pandas
import numpy as np
import pandas as pd
【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库
任务二:载入数据
(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据
df = pd.read_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train.csv')
df.head(3)
相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
**提示:**相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
**思考(Q1):**知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下’.tsv’和’.csv’的不同,如何加载这两个数据集?(所有问题在最后都会有答案,请大家自行先提前搜索)
**总结:**加载的数据是所有工作的第一步,我们的工作会接触到不同的数据格式(eg:.csv;.tsv;.xlsx),但是加载的方法和思路都是一样的,在以后工作和做项目的过程中,遇到之前没有碰到的问题,要多多查资料吗,使用googel,了解业务逻辑,明白输入和输出是什么。
任务三:每1000行为一个数据模块,逐块读取
chunker = pd.read_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train.csv', chunksize=1000)
思考Q2:什么是逐块读取?为什么要逐块读取呢?
任务四:将表头改成中文,索引改为乘客ID
对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据
PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口
df = pd.read_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)
df.head()
初步观察
导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等
任务一:查看数据的基本信息
df.info()
任务二:观察表格前10行的数据和后15行的数据
任务三:判断数据是否为空,为空的地方返回True,其余地方 返回False
总结:上面的操作都是数据分析中对于数据本身的观察
保存数据
任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv
df.to_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train_chinese.csv')
**总结:**数据的加载以及入门,接下来就要接触数据本身的运算,我们将主要掌握numpy和pandas在工作和项目场景的运用
**复习:**数据分析的第一步,加载数据我们已经学习完毕了。当数据展现在我们面前的时候,我们所要做的第一步就是认识他,今天我们要学习的就是了解字段含义以及初步观察数据。
第一章(PART2):pandas基础
知道你的数据叫什么
Q3:我们学习pandas的基础操作,那么上一节通过pandas加载之后的数据,其数据类型是什么呢?
任务一:pandas中有两个数据类型DateFrame和Series,通 过查找简单了解他们。
import numpy as np
import pandas as pd
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
任务二:根据上节课的方法载入"train.csv"文件
df = pd.read_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train.csv')
df.head(3)
任务三:查看DataFrame数据的每列的项
任务四:查看"cabin"这列的所有项[有多种方法]
任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除
经过我们的观察发现一个测试集test_1.csv有一列是多余的,我们需要将这个多余的列删去
**思考Q4:**还有其他的删除多余的列的方式吗?
任务六: 将[‘PassengerId’,‘Name’,‘Age’,‘Ticket’]这几个列元 素隐藏,只观察其他几个列元素
**思考:**对比任务五和任务六,是不是使用了不一样的方法(函数),如果使用一样的函数如何完成上面的不同的要求呢?
思考回答:
如果想要完全的删除你的数据结构,使用inplace=True,因为使用inplace就将原数据覆盖了,所以这里没有用
筛选的逻辑
表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。
下面我们还是用实战来学习pandas这个功能。
任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘 客信息。
任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘 客信息显示出来,并将这个数据命名为midage
提示:了解pandas的条件筛选方式以及如何使用交集和并集操作
任务三:将midage的数据中第100行的"Pclass"和"Sex"的数 据显示出来
思考Q5:这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?
任务四:使用loc方法将midage的数据中第100,105,108行 的"Pclass","Name"和"Sex"的数据显示出来
任务五:使用iloc方法将midage的数据中第100,105,108行 的"Pclass","Name"和"Sex"的数据显示出来
**复习:**在前面我们已经学习了Pandas基础,知道利用Pandas读取csv数据的增删查改,今天我们要学习的就是探索 性数据分析,主要介绍如何利用Pandas进行排序、算术计算以及计算描述函数describe()的使用。
第一章(PART3):探索性数据分析
开始之前,导入numpy、pandas包和数据
#加载所需的库
import numpy as np
import pandas as pd
#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据
text = pd.read_csv('E:/python-project/deep-learning/datawhale/kaggle/tantatic/hands-on-data-analysis-master/data/train_chinese.csv')
text.head()
了解你的数据吗?
教材《Python for Data Analysis》第五章
任务一:利用Pandas对示例数据进行排序,要求升序
# 具体请看《利用Python进行数据分析》第五章 排序和排名 部分
#自己构建一个都为数字的DataFrame数据
frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
index=['2', '1'],
columns=['d', 'a', 'b', 'c'])
frame
代码解析
pd.DataFrame() :创建一个DataFrame对象
np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7
index=['2, 1] :DataFrame 对象的索引列
columns=['d', 'a', 'b', 'c'] :DataFrame 对象的索引行
可以看到sort_values这个函数中by参数指向要排列的列,ascending参数指向排序的方式(升序还是降序)
总结:下面将不同的排序方式做一个小总结
任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进 行综合排序(降序排列),从数据中你能发现什么
'''
在开始我们已经导入了train_chinese.csv数据,而且前面我们也学习了导入数据过程,根据上面学习,我们直接
对目标列进行排序即可
head(20) : 读取前20条数据
'''
text.sort_values(by=['票价', '年龄'], ascending=False).head(20)
思考:排序后,如果我们仅仅关注年龄和票价两列。根据常识我知道发现票价越高的应该客舱越好,所以我们会明显看出,票价前20的乘客中存活的有14人,这是相当高的一个比例,那么我们后面是不是可以进一步分析一下票价和存活之间的关系,年龄和存活之间的关系呢?当你开始发现数据之间的关系了,数据分析就开始了。
任务三:利用Pandas进行算术计算,计算两个DataFrame数 据相加结果
# 具体请看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分
#建立一个例子
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
columns=['a', 'b', 'c'],
index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
columns=['a', 'e', 'c'],
index=['first', 'one', 'two', 'second'])
frame1_a
提醒:两个DataFrame相加后,会返回一个新的DataFrame,对应的行和列的值会相加,没有对应的会变成空值NaN。
当然,DataFrame还有很多算术运算,如减法,除法等,有兴趣的同学可以看《利用Python进行数据分析》第五章算术运算与数据对齐 部分,多在网络上查找相关学习资料。
任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有 多少人?
'''
还是用之前导入的chinese_train.csv如果我们想看看在船上,最大的家族有多少人(‘兄弟姐妹个数’+‘父母子女
个数’),我们该怎么做呢?
'''
max(text['兄弟姐妹个数'] + text['父母子女个数'])
是的,如上,很简单,我们只需找出兄弟姐妹个数和父母子女个数之和最大的数就行,先让这两列相加返回一个DataFrame,然后用max函数求出最大值,当然你还可以想出很多方法和思考角度,欢迎你来说出你的看法。
任务五:学会使用Pandas describe()函数查看数据基本统计信 息
#(1) 关键知识点示例做一遍(简单数据)
# 具体请看《利用Python进行数据分析》第五章 汇总和计算描述统计 部分
#建立一个例子
frame2 = pd.DataFrame([[1.4, np.nan],
[7.1, -4.5],
[np.nan, np.nan],
[0.75, -1.3]
], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
# 调用 describe 函数,观察frame2的数据基本信息
frame2.describe()
'''
count : 样本数据大小
mean : 样本数据的平均值
std : 样本数据的标准差
min : 样本数据的最小值
25% : 样本数据25%的时候的值
50% : 样本数据50%的时候的值
75% : 样本数据75%的时候的值
max : 样本数据的最大值
'''
任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列 数据的基本统计数据,你能发现什么?
思考:
从上面数据我们可以看出,
一共有891个票价数据,
平均值约为:32.20,
标准差约为49.69,说明票价波动特别大,
25%的人的票价是低于7.91的,50%的人的票价低于14.45,75%的人的票价低于31.00,
票价最大值约为512.33,最小值为0。
当然,这只是我的想法,你还可以有更多想法,欢迎写在你的学习笔记中。
思考:有更多想法,欢迎写在你的学习笔记中。
**总结:**本节中我们通过Pandas的一些内置函数对数据进行了初步统计查看,这个过程最重要的不是大家得掌握这些函数,而是看懂从这些函数出来的数据,构建自己的数据分析思维,这也是第一章最重要的点,希望大家学完第一章能对数据有个基本认识,了解自己在做什么,为什么这么做,后面的章节我们将开始对数据进行清洗,进一步分析
**回顾&引言:**前面一章的内容大家可以感觉到我们主要是对基础知识做一个梳理,让大家了解数据分析的一些操作,主要做了数据的各个角度的观察。那么在这里,我们主要是做数据分析的流程性学习,主要是包括了数据清洗以及数据的特征处理,数据重构以及数据可视化。这些内容是为数据分析最后的建模和模型评价做一个铺垫。
Question揭晓
**思考(Q1):**知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下’.tsv’和’.csv’的不同,如何加载这两个数据集?(所有问题在最后都会有答案,请大家自行先提前搜索)
pandas加载文件方式:
注意,read_csv和read_table都是是加载带分隔符的数据,每一个分隔符作为一个数据的标志,但二者读出来的数据格式还是不一样的,read_table是以制表符
\t 作为数据的标志,也就是以行为单位进行存储。
- read_csv 与 read_table 的区别
read_table读取
import pandas as pd
import numpy as np
c=pd.read_table('career_data.csv',nrows=5) # 只读了前5行
print c
print ('去掉列名和索引')
print c.values
print '\t'
print ('行列数')
c.values.shape
可以看出,读完后每个字符串之间有逗号相隔,这其实表明每一行作为一个维度进行了存储,所以最后它是一个5行1列的数组,每一行字符串为一列而不是每一个字符串。
- read_csv 读取
import pandas as pd
import numpy as np
c=pd.read_csv('career_data.csv',nrows=5)
print c
print ('去掉列名和索引')
print c.values
print '\t'
print ('行列数')
c.values.shape
而 read_csv读完后是一个5行4列的数组,每一个字符串作为一列,这是二者的区别。还有固定宽度读取的read_ffw 和table 的效果一样
思考Q2:什么是逐块读取?为什么要逐块读取呢?
使用pandas来处理文件的时候,经常会遇到大文件,而有时候我们只想要读取其中的一部分数据或对文件进行逐块处理。
#设置chunksize参数,来控制每次迭代数据的大小
chunker = pd.read_csv("data.csv",chunksize=5)
for piece in chunker:
print(type(piece))
#<class 'pandas.core.frame.DataFrame'>
print(len(piece))
#5
**思考Q4:**还有其他的删除多余的列的方式吗?
- 删除/选取某列含有特殊数值的行
import pandas as pd
import numpy as np
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC'))
print(df1)
df2=df1.copy()
#删除/选取某列含有特定数值的行
#df1=df1[df1['A'].isin([1])]
#df1[df1['A'].isin([1])] 选取df1中A列包含数字1的行
df1=df1[~df1['A'].isin([1])]
#通过~取反,选取不包含数字1的行
print(df1)
2. 删除/选取某行含有特殊数值的列
#删除/选取某行含有特定数值的列
cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]==3]
#利用enumerate对row0进行遍历,将含有数字3的列放入cols中
print(cols)
#df2=df2[cols] 选取含有特定数值的列
df2=df2.drop(cols,axis=1) #利用drop方法将含有特定数值的列删除
print(df2)
3. 删除含有空值的行或列
实现思路:利用pandas.DateFrame.fillna对空值赋予特定值,再利用上文介绍的方法找到这些含有特定值的行或列去除即可。
import pandas as pd
import numpy as np
df1 = pd.DataFrame(
[
[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, 4]
],columns=list('ABCD'))
print(df1)
df2=df1.copy()
df1['A']=df1['A'].fillna('null') #将df中A列所有空值赋值为'null'
print(df1)
df1=df1[~df1['A'].isin(['null'])]
print(df1)
#删除某行空值所在列
df2[0:1]=df2[0:1].fillna('null')
print(df2)
cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]=='null']
print(cols)
df2=df2.drop(cols,axis=1)
print(df2)
思考Q5:这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?
In [1]: df
Out[1]:
0 1 2 3 4
0 -0.127085 -0.538321 0.641609 -0.020957 0.003503
1 -0.304994 0.157213 0.586962 0.251505 1.022418
2 -0.239710 1.235562 0.917208 -0.964571 -1.120331
3 -0.176416 -0.216204 0.433998 -0.366355 -0.261724
# 删除若干行数据
In [2]: df1 = df.loc[[0,2,3],:]
In [3]: df1
Out[3]:
0 1 2 3 4
0 -0.127085 -0.538321 0.641609 -0.020957 0.003503
2 -0.239710 1.235562 0.917208 -0.964571 -1.120331
3 -0.176416 -0.216204 0.433998 -0.366355 -0.261724
# reset_index,原行索引作为一列保留,列名为index
In [4]: df2 = df1.reset_index()
In [5]: df2
Out[5]:
index 0 1 2 3 4
0 0 -0.127085 -0.538321 0.641609 -0.020957 0.003503
1 2 -0.239710 1.235562 0.917208 -0.964571 -1.120331
2 3 -0.176416 -0.216204 0.433998 -0.366355 -0.261724
# reset_index,通过函数 drop=True 删除原行索引
In [6]: df3 = df1.reset_index(drop=True)
In [7]: df3
Out[7]:
0 1 2 3 4
0 -0.127085 -0.538321 0.641609 -0.020957 0.003503
1 -0.239710 1.235562 0.917208 -0.964571 -1.120331
2 -0.176416 -0.216204 0.433998 -0.366355 -0.261724