【AI面试】DeepSeek 高频面题全面整理(★面试必备版★)

 NLP Github 项目:


大模型(LLMs)高频面题全面整理(含DeepSeek)

​全面总结了【大模型面试】的高频面题和答案解析,答案尽量保证通俗易懂且有一定深度。

适合大模型初学者和正在准备面试的小伙伴。

这是我自己跳槽时的私用手册,希望也能帮助你快速完成面试准备,先人一步顺利拿到高薪 Offer 🎉🎉🎉

一、大模型进阶面

💯 DeepSeek篇

【大模型进阶面 之 DeepSeek篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 大模型魔改篇

【大模型进阶面 之 模型魔改篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 大模型压缩篇

【大模型进阶面 之 模型压缩篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 分布式训练篇

【大模型进阶面 之 分布式训练篇】 你必须要会的高频面题 查看答案

点击查看答案

二、大模型微调面

💯 有监督微调(SFT)篇

【大模型微调面 之 SFT篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 高效微调篇

【大模型微调面 之 PEFT篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 提示学习篇

【大模型微调面 之 提示学习篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 人类对齐训练(RLHF)篇

【大模型微调面 之 RLHF篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 Prompt 工程篇

【大模型微调面 之 提示工程篇】 你必须要会的高频面题 查看答案

点击查看答案

三、大模型(LLMs)基础面

💯 大模型(LLMs)架构篇

【大模型基础面 之 LLM架构篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 注意力机制(Attention)篇

【大模型基础面 之 注意力机制篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 Transformer 理论篇

【大模型基础面 之 提示工程Transformer篇】 你必须要会的高频面题 查看答案

点击查看答案

四、NLP 任务实战面

💯 文本分类篇

【NLP 任务实战面 之 文本分类篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 命名实体识别(NER)篇

【NLP 任务实战面 之 实体识别篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 关系抽取篇

【NLP 任务实战面 之 关系抽取篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 检索增强生成(RAG)篇

【NLP 任务实战面 之 RAG篇】 你必须要会的高频面题 查看答案

点击查看答案

五、NLP 基础面

💯 分词(Tokenizer)篇

【NLP 基础面 之 分词篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 词嵌入(Word2Vec)篇

【NLP 基础面 之 词嵌入篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 卷积神经网络(CNN)篇

【NLP 基础面 之 CNN篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 循环神经网络(RNN)篇

【NLP 基础面 之 RNN篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 长短期记忆网络(LSTM)篇

【NLP 基础面 之 LSTM篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 BERT 模型篇

【NLP 基础面 之 BERT模型篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 BERT 变体篇

【NLP 基础面 之 BERT变体篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 BERT 实战篇

【NLP 基础面 之 BERT实战篇】 你必须要会的高频面题 查看答案

点击查看答案

六、深度学习面

💯 激活函数篇

【深度学习面 之 激活函数篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 优化器篇

【深度学习面 之 优化器篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 正则化篇

【深度学习面 之 正则化篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 归一化篇

【深度学习面 之 归一化篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 参数初始化篇

【深度学习面 之 参数初始化篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 集成学习篇

【深度学习面 之 集成学习篇】 你必须要会的高频面题 查看答案

点击查看答案

💯 模型评估篇

【深度学习面 之 模型评估篇】 你必须要会的高频面题 查看答案

点击查看答案

### DeepSeek入门到精通教程 #### 一、初识DeepSeek及其核心优势 DeepSeek是一款融合了本地推理和联网搜索能力的人工智能工具,这种特性不仅增强了其灵活性,还为本地模型自我学习与进化提供了可能性[^1]。 #### 二、在线使用指南 对于希望快速上手的用户来说,可以通过官方提供的在线平台体验DeepSeek的强大功能。值得注意的是,如果是以开发者的身份参与,则建议通过GitHub账户进行绑定操作,这不仅能享受专属权益,还能获得额外的tokens奖励[^2]。 #### 三、深入理解:实战技巧分享 随着技能水平的提升,可以进一步探索有关于如何优化性能的话,比如针对特定应用场景下的模型压缩方法论或是量化处理策略等内容。这些高级话有助于更好地掌握该工具的应用边界和技术潜力[^3]。 #### 四、定制化学习路径规划 为了帮助使用者构建更加系统的知识体系,在对具体的技术挑战时能够游刃有余,可以根据个人兴趣点和技术背景制定相应的学习计划。例如,依据目标公司的面试经验总结高频考点,并结合LeetCode等资源来进行针对性练习;同时关注系统架构方的重点议,绘制清晰的学习路线图以便循序渐进地提高自己[^4]。 ```python # 示例代码用于展示如何调用API获取数据 import requests def fetch_data(api_url): response = requests.get(api_url) if response.status_code == 200: return response.json() else: raise Exception('Failed to load data') api_endpoint = 'https://example.com/api/v1/deepseek' data = fetch_data(api_endpoint) print(data) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值