以下是根据“大模型 + 强化学习(RL)+ 推理能力”这一主题,精心挑选的 50 道可能在面试中出现的技术难点题目,并附带简要答案示例。题目按照预计出现频率与关键程度排序,前面的题目更常见、更基础或更关键,后面的逐步深入和发散。请根据实际面试时长与侧重点灵活选择。
配合此文章使用,效果更佳:DeepSeek-R1深度报告:基于Python强化学习的前沿长链推理模型揭秘与实战——兼谈SEO优化与实用经验分享
1. 解释什么是 Chain-of-Thought (CoT),以及它对大语言模型推理有什么帮助?
参考答案:
- CoT 指在大语言模型回答问题时,显式地输出中间思维过程或推理步骤。
- 好处:
- 提高模型对复杂问题的准确性;
- 使推理过程可解释,便于调试和错误分析;
- 可以通过强化学习或监督微调,让模型更“主动”地展开推理步骤。