图神经网络
文章平均质量分 89
本专栏介绍一些常见的图神经网络模型及代码。
Arvin Ou
一名再普通不过的学生
展开
-
图神经网络(一)—GraphSAGE-pytorch版本代码详解
GraphSAGE代码详解-pytorch版本1. GraphSAGE导入2. 代码解析2.1 加载数据2.2 Unsupervised Loss2.3 Models2.4 评估与模型使用2.5 Main参考资料1. GraphSAGE导入论文标题:Inductive Representation Learning on Large Graphs作者:William L. Hamilton, Rex Ying and Jure Leskovec在GraphSAGE之前提出的图神经网络方法,如原创 2021-05-16 15:10:26 · 13403 阅读 · 21 评论 -
图神经网络(三)—GAT-pytorch版本代码详解
GCN代码详解-pytorch版本1 GAT基本介绍2 代码解析2.1 导入数据2.2 GAT模型框架2.3 评估与训练参考资料写在前面…在研究生的工作中使用到了图神经网络,所以平时会看一些与图神经网络相关的论文和代码。写这个系列的目的是为了帮助自己再理一遍算法的基本思想和流程,如果同时也能对其他人提供帮助是极好的~博主也是在学习过程中,有些地方有误还请大家批评指正!github: https://github.com/OuYangg/GNNs1 GAT基本介绍论文标题:Graph atte原创 2022-04-11 16:28:13 · 10314 阅读 · 2 评论 -
图神经网络(GNNs)模型学习笔记与总结
GCN学习笔记1 基于谱域的GCN1.1 知识要点:1.2 Spectral-based models1.2.1 Spectral Network1.2.2 ChebNet1.2.3 GCN1.2.4 AGCN1.2.5 DGCN1.2.6 GWNN1.2.7 小结2 基于空间的GCN2.1 知识要点2.2 Spatial-based models2.2.1 Neural FPs2.2.2 DCNN2.2.2 PATCHY-SAN1 基于谱域的GCN1.1 知识要点:在spectral-based G原创 2021-11-02 14:23:29 · 2640 阅读 · 0 评论 -
图神经网络(二)—GCN-pytorch版本代码详解
GCN代码详解-pytorch版本1 GCN基本介绍2 代码解析2.1 导入数据2.2 GCN模型框架2.3 评估与训练参考资料写在前面…在研究生的工作中使用到了图神经网络,所以平时会看一些与图神经网络相关的论文和代码。写这个系列的目的是为了帮助自己再理一遍算法的基本思想和流程,如果同时也能对其他人提供帮助是极好的~博主也是在学习过程中,有些地方有误还请大家批评指正!github: https://github.com/OuYangg/GNNs1 GCN基本介绍论文标题:Semi-super原创 2022-04-11 16:01:08 · 16004 阅读 · 9 评论 -
图神经网络模型—PATCHY-SAN的基本思想与流程
PATCHY-SAN方法阅读笔记1 将CNN应用到图结构数据时面临的问题:2 PATCHY-SAN流程1 将CNN应用到图结构数据时面临的问题:感受野不同:在处理图像问题时,卷积神经网络利用固定大小Kernel提取图像的特征,见下图当面对图结构数据时,由于网络中各节点的一阶邻居数是不同的,如果仍然使用固定大小的kernel是不可行的,因为卷积核的感受野会是不同的。那么在提取邻域的时候,是否可以对邻域进行削减或padding,使得卷积操作可行(注:不是网络中所有的节点都做为中心节点进行卷积神经网原创 2021-05-06 10:41:57 · 1348 阅读 · 1 评论