推荐算法
文章平均质量分 96
Arvin Ou
一名再普通不过的学生
展开
-
GNN推荐算法(四)—LESSR:Handling Information Loss of Graph Neural Networks for Session-based Recommen
1 一点点引入LESSR(Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) 算法与之前讲到的LR-GCN、LightGCN以及Multi-GCCF算法针对的需求不同。后三个算法基于user-item二分图的结构为user做出推荐,而LESSR则是要通过挖掘用户历史行为的时序模式来预测用户下一时刻的行为。换句话说就是:根据用户某一段时间内的消费.原创 2022-05-27 15:46:56 · 943 阅读 · 0 评论 -
GNN推荐算法(三)—LR-GCCF:让GCN更深
LR-GCCF:让GCN更深1 一点点引入在读**‘Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach’摘要时,就感觉文中提出的LR-GCCF和LightGCN的思路有异曲同工之妙!于是查了查两篇文章的发表时间,都是2020年。只不过LightGCN专注于探讨简化之后的NGCF是不是会得到更好的表现,而LR-GCCF**除了简化embedding更新.原创 2022-05-20 10:44:09 · 1520 阅读 · 0 评论 -
GNN推荐算法(二)—Multi-GCCF:物尽其用
Multi-GCCF:物尽其用1 一点点引入Multi-Graph convolution collaborative filtering(Multi-GCCF) 属于基于图神经网络的协同过滤算法。协同过滤算法通常基于这样一个假设:相似的用户往往喜欢同样的item,而具有相似客户的item往往会得到相似的评分。所以,大多数协同过滤算法基于user-item二分网络做出推荐,但由于在实际场景中每个user所对应的item数量是有限的,这就会导致构造出的user-item二分网络非常稀疏。此时,使用图卷原创 2022-05-19 12:14:57 · 1248 阅读 · 1 评论 -
GNN推荐算法(一)—LightGCN不相信非线性激活与特征转换
LightGCN最近在学一些关于推荐的算法,以此系列博客作为学习过程中的简单记录。同时希望找到有相同兴趣的小伙伴一起交流交流学习资源~1 Background在节点分类任务中,每个节点通常有多个属性信息。此时,非线性激活函数在理论上来说能够基于输入的属性捕捉到高维的特征信息。但在协同过滤中,由于节点的输入只有一个ID信息,使用非线性激活函数是否能够带来增益是有待观察的。此外,基于节点ID信息做线性特征转换是否work,也是一个值得探讨的问题。LightGCN的作者以nueral grpah co.原创 2022-05-18 11:57:29 · 1507 阅读 · 0 评论