图神经网络(二)—GCN-pytorch版本代码详解

写在前面…
在研究生的工作中使用到了图神经网络,所以平时会看一些与图神经网络相关的论文和代码。写这个系列的目的是为了帮助自己再理一遍算法的基本思想和流程,如果同时也能对其他人提供帮助是极好的~博主也是在学习过程中,有些地方有误还请大家批评指正!

  • github: https://github.com/OuYangg/GNNs

1 GCN基本介绍

  • 论文标题:Semi-supervised classification with graph convolutional networks
  • 作者:Thomas N. Kipf, Max Welling

GCN是一种基于谱域的图卷积神经网络。在spectral-based GCN模型中,会将每个节点的输入看作是信号,并且在进行卷积操作之前,会利用转置后的归一化拉普拉斯矩阵的特征向量将节点的信号进行傅里叶变换,卷积完了之后再用归一化拉普拉斯矩阵的特征向量转换回来。其中,将信号进行傅里叶变换的公式如下:
F ( x ) = U T x F(x)=U^Tx F(x)=UTx
F − 1 ( x ) = U x F^{-1}(x) = Ux F1(x)=Ux
其中, U U U为归一化拉普拉斯矩阵 L = I N − D − 1 / 2 A D − 1 / 2 L=I_N-D^{-1/2}AD^{-1/2} L=IND1/2AD1/2的特征向量。基于卷积理论,卷积操作被定义为:
g x = F − 1 ( F ( g ) F ( x ) ) = U ( U T g U T x ) , g x=F^{-1}(F(g) F(x))=U(U^TgU^Tx), gx=F1(F(g)F(x))=U(UTgUTx),
其中, U T g U^Tg UTg为谱域的过滤器,若将 U T g U^Tg UTg简化为一个可学习的对角矩阵 g w g_w gw,则有
g x = U g w U T x g x=Ug_wU^Tx gx=UgwUTx.
一个比较有名的spectral-based GCN模型是ChebNet的思想就是利用切比雪夫多项式来作为参数,得到
g x = ∑ k = 0 K w k T k ( L ~ ) x gx=\sum_{k=0}^K w_kT_k(\widetilde{L}) x gx=k=0KwkTk(L )x,
其中, T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x )

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值