引言
对VMD、EMD、CEEMDAN确实容易出现审美疲劳,用于优化的适应度函数(什么信息熵、包络谱熵,排列熵)也是大水漫灌,缺乏新意。如此以来,论文屡投被拒,录用遥遥无期。
本期推出一款小众、性能强大信号分解方法,逐次变分模态分解(successive variational mode decomposition,SVMD),2020年发表在信号处理顶刊signal processing。仅有90+次引用,知道的人很少,使用的人就更少了。
SVMD不需要知道模态的个数,可以连续提取模态,在一定程度上解决了VMD的模态个数选择问题。然而,SVMD的性能受到其参数maxAlpha的影响。手动调参是繁琐的、不经济的。可选择群智能优化算法(【选择自由,免费下载】超340种基础群智能优化算法-Matlab版(截至2024.03.10))对其参数进行自适应的选择。在SVMD参数优化的创新方式可以有两种:1,改进优化算法用于SVMD;2,提出新的适应度函数。第一种很常见,第二种却不多。
本期整理并复现了一些高水平EI、SCI期刊中的适应度函数,加上一些常规的适应度函数,目前一共13种用以参数优化的适应度函数。
(如有其他的适应度函数,可以告知我们文章链接进行复现,持续更新)
包络熵最小,Envelope entropy(水烂了)
信息熵最小,Information entropy(水烂了)
排列熵最小,Permutation entropy(水烂了)
样本熵最小,Sample entropy(水烂了)
能量熵最小,energy entropy
能量差最小,energy error
峭度最小,kurtosis
平均包络熵最小,Average Envelope entropy
模糊熵最小,Fuzzy entropy
包络峭度因子最小,Envelope kurtosis
包络谱峰值因子最小,crest factor of envelope spectrum
最大互信息系数
皮尔逊相关系数
我们以一段长度为1024的信号数据作为待分解数据,利用灰狼优化算法GWO优化SVMD参数。为了快速验证算法,这里GWO的迭代次数为10次,种群个数为20。
Matlab代码下载
微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
【找好切入点,篇篇都能中】SVMD的参数优化:13种适应度函数,自由切换-matlab代码
340多种基础的群智能优化算法-matlab
175种群智能优化算法python库
求解cec测试函数-matlab
解决12工程设计优化问题-matlab
求解11种cec测试函数-python
解决12种工程设计优化问题-python
用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)
沙场大点兵:24种信号分解方法(附matlab代码)
沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd