【源自IEEE顶刊】基于散布熵(色散熵)及其5种多尺度熵的状态识别、故障诊断(附Matlab代码)

 引言

机械设备在运行中的故障率较高,使得状态识别、故障诊断得到广泛重视。目前,常见的故障诊断方法主要包括振动信号分析,声学信号分析,温度监测,电信号分析等。传统时、频域的特征提取方法往往不能有效提取隐藏的故障特征,导致故障识别率降低。由于在不同位置发生故障时,故障冲击引起的系统响应不同,从而使得监测数据的混乱程度有所不同。基于熵值理论的分析方法可以不经过数据的分解或变换,直接度量数据的复杂度,可完成不同故障的识别。状态识别、故障诊断本质是一个分类问题,解决这类问题主要有两步:1.利用熵的方法从信号中提取信息,即信号的熵值为故障特征;2.基于提取的熵值,利用机器学习方法作为分类器进行识别
 

本期推出散布熵(又称色散熵)及其5种多尺度熵共6种熵结合多种机器学习方法进行状态识别、故障诊断。

散布熵(Dispersion Entropy)多尺度散布熵(Multiscale Dispersion Entropy)复合多尺度散布熵(Composite Multiscale Dispersion Entropy)精细复合多尺度散布熵(Refined Composite Multiscale Dispersion Entropy)时移多尺度散布熵(Time-shift Multiscale Dispersion Entropy)层次散布熵(Hierarchical Multiscale Dispersion Entropy)

基于散布熵及5种多尺度的理论知识中、英文期刊都有很多,本期不在赘述。

参考文献:

  1. 散布熵:M. Rostaghi and H. Azami, “Dispersion Entropy: A Measure for Time-Series Analysis,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 610–614, May 2016, doi: 10.1109/LSP.2016.2542881.

  2. 多尺度散布熵:Lebreton, C.; Kbidi, F.; Graillet, A.; Jegado, T.; Alicalapa, F.; Benne, M.; Damour, C. PV System Failures Diagnosis Based on Multiscale Dispersion Entropy. Entropy,2022, 24, 1311.

  3. 复合多尺度散布熵:郑近德,李从志,潘海洋.复合多尺度散布熵在滚动轴承故障诊断中的应用[J].噪声与振动控制,2018,38(S2):653-656.

  4. 精细复合多尺度散布熵:李从志,郑近德,潘海洋,等.基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2019,30(14):1713-1719+1726.

  5. 时移多尺度散布熵:王勉,刘勇.基于时移多尺度散布熵和SVM的滚动轴承故障诊断方法[J].机械设计与研究,2021,37(05):83-87.

  6. 层次散布熵:吴芮,张守京.基于层次散布熵的滚动轴承剩余寿命预测方法[J].电子测量技术,2023,46(05):65-71.

图片

02. 实操

数据集

本文使用故障识别和诊断任务中经典的凯斯西储大学CWRU数据集。随机选择了5类状态(当然可以加入更多的状态),选用DE端的振动数据,暂且命名为正常,故障1,故障2,故障3,故障4。设置每个样本长度为1024,每类状态共100个样本,总样本大小为:500*1024。即样本数*样本长度。

图片

样本分割设置了重叠个数,可以随意选择重叠个数进行样本划分。非重叠即为重叠个数为0的情况,具体的原理如下:
非重叠:

图片

重叠:

图片

特征提取

计算每个样本的熵值(以上6种熵可随意切换),形成500*n的特征空间,将特征输入到后续的分类器中。对于散布熵而言,n=1,对于多尺度熵而言,n=你设置的时间尺度

分类器

将上述特征空间以一定的比例,划分了训练集、测试集,可非常方便地输入到任何分类器中

暂时集成了3种常用的分类器(可随意切换,也可自行添加其他分类器):

  1. 极限学习机(Extreme Learning Machine,ELM)

  2. 支持向量机(Support Vector Machine, SVM)

  3. 决策树(Decision Tree,DT)

为了消除随机性带来的影响,使结果更具说服力,模型运行了多次,每次运行都随机选择新的训练集和测试集,以平均结果作为最后的结果。

诊断流程

故障识别、诊断流程图大致如下:

图片

HDE-ELM结果展示

不同状态对比

图片

图片

混淆矩阵

图片

分类结果图

图片

特征值 和 多次运行结果保存在mat中。可以方便使用matlab,python调用和查看这里考虑快速验证代码和算法,仅运行了2次,可根据实际需要修改。

友情提示

1.理论上,该代码可适用于所有分类数据集,仅需将数据格式转换成:样本数N x 特征个数M。因此,可以浅显的理解:多分类问题实质是一个数据格式转换过程

2.理论上,该代码可替换的部分只有:数据加载和参数设置好处是:代码修改量极少,复用率高

3.如有matlab基础语法和代码bug问题,请多看资料,百度或者GPT解决;

4.如有其他专业疑问,请多阅读相关文献。

Matlab代码下载

微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。

基于散布熵(色散熵)及其5种多尺度熵的状态识别、故障诊断(附Matlab代码)

点击链接跳转:


matlab版的340种基础优化算法免费下载

cec2017测试函数使用教程及matlab代码免费下载

cec2018测试函使用教程及matlab代码免费下载

cec2019测试函使用教程及matlab代码免费下载

cec2020测试函使用教程及matlab代码免费下载

cec2021测试函使用教程及matlab代码免费下载

cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!

175种群智能优化算法python库

超175+种群智能优化算法Python库!!!icon-default.png?t=N7T8http://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484577&idx=1&sn=ed0b2e27b73e738c094c7534a63a2cda&chksm=c12be8a4f65c61b2f3d90e2b4d1f480f8d0bb038b6598828ebf2434006e07925f8102af9795f&scene=21#wechat_redirect

求解cec测试函数-matlab

最新最火!cec2022测试函数来了(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484693&idx=1&sn=ce311acb26bee2894db6fe90776288bd&chksm=c12be910f65c6006af080b1e97ad5514eee06b64d2caeeac2008b8c06fdc3ba379455e9ca709&scene=21#wechat_redirect

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485052&idx=1&sn=80e5573c1c005ee5640e44935044ee35&chksm=c12bea79f65c636fc73758b4f4893502bd89cbd1c5d15d7db15e8b5c94eeae40450439d44944&token=681266555&lang=zh_CN#rd

求解11种cec测试函数-python

一网打尽!170+种优化算法求解11种cec测试函数(附Python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484745&idx=1&sn=1957f7c9b44c47f171c1cd46054d1679&chksm=c12be94cf65c605a5e0f8404e6c90964ce0743b7c25ff5f98a03dedc77e5eec5b48bf0c0e782&token=681266555&lang=zh_CN#rd

解决12种工程设计优化问题-python

大放送!170+种优化算法解决12种工程设计问题(附python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485068&idx=1&sn=c913be0f2445f8b4d3e944569f5e599f&chksm=c12bea89f65c639f1df0f8e6cacffc1fdffa96683d10743094435ee6b0b55573a5bc8eec7eb3&token=681266555&lang=zh_CN#rd

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)21种混沌映射方法-混沌初始化,适用于所有优化算法icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486215&idx=2&sn=58f1a69175b0d6431a4c7cdfa114b84d&chksm=c12be702f65c6e14e6bd1ddc33b9cec74991d93303c325853049b7e4afd09039b13083fa79c5&token=25423484&lang=zh_CN#rd

沙场大点兵:24种信号分解方法(附matlab代码) 

沙场大点兵:24种信号分解方法(附matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486001&idx=1&sn=a87c24cb401017a78a90bd1b1439fcb0&chksm=c12be634f65c6f22368b7229a59ac5ef330b89d710c826dbfd1a1c34a02b1dd7e909c7f40d79&token=25423484&lang=zh_CN#rd

 沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值