代码包括5种光伏模型(可自由一键切换),12种指标,3种示例算法DBO,GWO,HHO,
模块化编程,仅需一行可扩展到其他群优化算法。
太阳能被广泛认为是一种有前途和丰富的清洁能源。由于技术限制,利用光伏(PV)系统将太阳能转化为电能的效率尚不令人满意。为了改善这一点,必须开发一个包含良好估计参数的准确模型。然而,由于PV模型的非线性和多模态特性,其参数辨识过程具有挑战性。研究者们使用群智能优化算法来解决太阳能光伏模型中的参数估计问题。可以在各大中科院1区顶级期刊上见到基于群智能优化算法的光伏模型的参数估计的研究。比如:发表在applied energy(连续多年中科院1区top,影响因子11.2),energy conversion and management(连续多年中科院1区top,影响因子10.4)。
本期包括了5种光伏模型:
-
Single diode model单二极管模型
-
Double diode model双二极管模型
-
Three diode model三二极管模型
-
Four diode model四二极管模型
-
Photovoltaic module model光伏组件模型
注意:各论文中变量表示和位置都不同,但物理含义是一样的。因此,不要纠结字母表示的问题。
光伏模型的参数提取可以表述为一个优化问题。通常采用均方根误差(RMSE)作为目标函数,量化计算值与实测值之间的差值,如公式所示:
采用的R.T.C. France silicon solar cell and PhotowatPWP201 模型参数约束如下:
代码使用仅需3步:
1.选择光伏模型优化问题:
5种光伏模型集成到了独立的.m函数中,即插即用,自由切换,只需要输入指令就可以选择对应的模型。非常方便,代码改动的工作量只有一个数字的量。
% pv_type='1DM'; 选择 single-diode model,1DM
% pv_type='2DM'; 选择 double-diode model,2DM
% pv_type='3DM'; 选择 three-diode model,3DM
% pv_type='4DM'; 选择 four-diode model,4DM
% pv_type='PMM'; 选择 PV module-diode model,PMM
2.选择自己的优化算法:
以哈里斯鹰优化算法HHO、灰狼优化算法GWO、蜣螂优化算法DBO为例。算法最大迭代次数为100次,种群数30。将优化算法封装成以下模板:
function [最优值,最优解,收敛曲线]=算法名字(种群数,最大迭代次数,下限,上限,维度,目标函数)
函数模板中的输入和输出个数、变量名、位置可以自由选择,但须有以上几个参数。这样就可以在主函数main.m里根据上面的输入和输出形式,在相应的位置增加、替换算法,即插即用,自由切换。这里有340多种算法等您开发。
3. 保存结果
考虑到优化算法的随机性,采用多次运行后的结果作为最终结果更具说服力,最后结果进行展示,并提供8种统计指标:
1.最优值(Best),
2.最差值(Worst),
3.均值(Mean),
4.中位数(Median),
5.标准差(Std),
6. wilcoxon秩和检验(Wilcoxon's rank-sum test) ,
7. wilcoxon符号秩检验(Wilcoxon signed-rank test ) ,
8. Friedman检验(Friedman Test)
另外,还有箱型图(Boxplot)展现数据的分布。
结果自动保存为excel 和 mat格式。同时也保存了收敛曲线图。
另外,还有光伏参数估计常用的4种评价指标:
结果展示:
这里考虑快速验证代码和算法,仅运行了5次,可根据实际需要修改。
结果自动保存到excel
Matlab代码下载
微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
助力1区顶刊!光伏模型参数估计:5种模型自由一键切换,12种指标全覆盖,适用所有群优化算法(附Matlab代码)
点击链接跳转:
340种基础优化算法免费下载-matlab
matlab版的340种基础优化算法免费下载
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!