引言
受最近深度学习在计算机视觉和语音识别方面的成功启发,许多研究者提出将一维时间序列数据编码为不同类型的图像,这样可以放大数据中的动态特性,更好地表征原数据。
基于对称点模式(symmetric dot pattern)的多元数据融合
对称点模式(Symmetrized Dot Pattern,SDP)算法可将复杂时间序列以散点的形式清晰映射在极坐标图中,可以使原始时域信号通过图形化的方式提高可视化能力。因为极坐标图像的特殊性,多元、多通道、多传感器数据信息可通过SDP方法融合在有限区域中。适用于多元、多通道、多传感器信号的融合(代码获取链接),可结合(CNN,Resnet,VGG,transformer)的深度学习技术使用。
参考文献:
1.https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/smt2.12118
2.万周,何俊增,姜东等.基于参数优化SDP分析的转子故障诊断方法[J].振动与冲击,2023,42(01):81-88.
Matlab代码下载
点击链接跳转:
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!
175种群智能优化算法python库
求解cec测试函数-matlab
解决12工程设计优化问题-matlab
求解11种cec测试函数-python
解决12种工程设计优化问题-python
用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)
沙场大点兵:24种信号分解方法(附matlab代码)
沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd