引言
2025年2月,研究者在国际顶级期刊《Chaos, Solitons & Fractals》(JCR 1区,中科院1区 Top)上发表科学研究成果,以“Global ordinal pattern attention entropy: A novel feature extraction method for complex signals”为题。在注意熵(Attention entropy)的基础上提出了 全局有序模式注意熵 Global ordinal pattern attention entropy,GOPAE,并将GOPAE应用于凯斯西储大学故障轴承振动数据、帕德博恩大学(Paderborn University)故障轴承电流数据、ADHD儿童的脑电图EEG信号。结果表明,与以前的方法相比,GOPAE能够有效识别不同类型的复杂信号。
本文将 全局有序模式注意熵 Global ordinal pattern attention entropy,GOPAE 扩展到5种多尺度(部分暂无任何文献应用报道,属全球首创),可用于分析一切时间序列中,如:电能质量数据、振动数据、风速、功率、声音、温度、交通、水流、地震波、心率、脑电、肌电、金融等等,您能想到的时间序列皆有可能。知道的人很少很少,发文章全凭眼疾手快,赶快应用到自己的研究领域吧。参考其他熵,发个二/三区SCI没有任何问题,运气好一区也能行,水个中文核心更是不在话下。
1.全局有序模式注意熵(Global ordinal pattern attention entropy)
2.多尺度全局有序模式注意熵(Multiscale Global ordinal pattern attention entropy)
3.层次全局有序模式注意熵(Hierarchical Global ordinal pattern attention entropy)
4.复合多尺度全局有序模式注意熵(Composite multiscale Global ordinal pattern attention entropy)
5.精细复合多尺度全局有序模式注意熵(Refined Composite multiscale Global ordinal pattern attention entropy)
6.时移多尺度全局有序模式注意熵(Time-shift multiscale Global ordinal pattern attention entropy)
第1步:根据Takens的延迟嵌入定理的一维时间序列重构。
第2步:然后,将每个嵌入向量根据的秩序转换为有序模式元素,计算每个模式的频率:
第3步:对于每个顺序模式,将其作为关键模式,并计算注意熵 H
第4步:计算输入数据x的GOPAE
GOPAE 计算过程
为了进一步验证我们的GOPAE方法的优越性,使用两种机械故障信号(凯斯西储大学故障轴承振动数据、帕德博恩大学(Paderborn University)故障轴承电流数据)和一种脑电图信号进行对比实验。所选信号类型的多样性反映了可以通过其熵值揭示的不同特征。
凯斯西储大学故障轴承振动数据 结果
Paderborn University故障轴承电流数据 结果
参考文献
Jiang R , Shang P , Yin Y .Global ordinal pattern attention entropy: A novel feature extraction method for complex signals[J].Chaos, Solitons and Fractals, 2025, 191.DOI:10.1016/j.chaos.2024.115810.
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
2025年2月中科院1区SCI,特征提取、故障诊断新方法来了!
2025年2月中科院1区SCI,特征提取、故障诊断新方法来了!
2025年2月中科院1区SCI,特征提取、故障诊断新方法来了!
点击链接跳转:
390种优化算法免费下载-matlab
https://mp.weixin.qq.com/s/EzKqtSwR9r2DkGj-ozJXwA
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!