机器学习之朴素贝叶斯(Naive bayes)学习笔记-Datawhale Task02

AuthorBryce230
e-mail2540892461@qq.com
Softwarewin10,Pycharm2019.3.3,Python3.7.7

1 基本概念

在这里插入图片描述
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。 我们称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。朴素贝叶斯是贝叶斯决策理论的一部分,贝叶斯决策理论的核心思想是“高概率思想”:
在这里插入图片描述

优点缺点
1)朴素贝叶斯模型有稳定的分类效率;2)对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练;3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为实际中属性之间相互独立往往不成立;2) 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳;3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率;4)对输入数据的表达形式很敏感。

2 使用条件概率来分类

在这里插入图片描述因此,我们需要求解的是类似于这样的等式:
在这里插入图片描述
可以将其看为:
在这里插入图片描述
这里就需要用到基本概念里提到的朴素贝叶斯假设:特征是相互独立的。在类别为y时,我们有:
在这里插入图片描述
由以上两式,我们可以得到:
在这里插入图片描述
因为分母P(X)是定值,所以在比较大小时,只要比较分子就可以了,这个在后面的程序里会体现。 进一步写为:
在这里插入图片描述

3 使用朴素贝叶斯进行文本分类

朴素贝叶斯是用于文档分类的常用算法,现在我们就基于Python用朴素贝叶斯算法来对文本进行分类。
在这里插入图片描述

3.1 从文本中构建词向量

首先我们需要把文本看成单词向量或者词条向量,也就是说将句子转换为向量。(该程序基于在线社区的斑点犬爱好者留言板,来自《机器学习实战》一书)
1)去掉标点符号,获取词条向量和类型标签:

'''
Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
'''
# 函数说明:创建实验样本
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],       #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]#类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

2)创建一个包含在所有文档中出现的不重复词的列表,所以需要用到set数据类型。操作符“|”表示并集(也是位或or操作符)。

'''
Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
'''
# 函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

3)该函数是为了检验每个输入的单词是否存在于词汇表中,存在取“1”,不存在取“0”,也即初始化一个全0的向量。

'''
Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
'''
# 函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                               #创建一个其中所含元素都为0的向量
    for word in inputSet:                                          #遍历每个词条
        if word in vocabList:                                      #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec

3.2 从词向量计算概率

这里我们需要明确两个问题:

3.2.1解决零概率问题

只需在初始化的时候,将分子初始化改为1,分母初始化为2
在这里插入图片描述

3.2.2 解决下溢问题

数值下溢问题: 是指计算机浮点数计算的结果小于可以表示的最小数,因为计算机的能力有限,当数值小于一定数时,其无法精确保存,会造成数值的精度丢失,由上述公式可以看到,求概率时多个概率值相乘,得到的结果往往非常小。
其中比较常用的解决办法是取自然对数,将连乘转换为连加
在这里插入图片描述

3.2.3 朴素贝叶斯分类器

实现上述条件概率的伪代码如下:
在这里插入图片描述

基于伪代码,我们可以写出具体的代码。

'''
Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
'''
# 函数说明:朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                     #计算训练的文档数目
    numWords = len(trainMatrix[0])                      #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)   #文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords)#创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0                        #分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                   #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)                      #取对数,防止下溢出
    p0Vect = np.log(p0Num/p0Denom)
    #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
    return p0Vect,p1Vect,pAbusive

此处用到了Numpy库函数,所以在程序开始处添加

import numpy as np

3.3 测试使用算法

我们上面说过,比较大小只要比较分子大小即可,因为分母一样。另外这里两个概率之间是加,因为已经取了对数。

#函数说明:朴素贝叶斯分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)  #只是分子部分
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1   #谁概率大取谁
    else:
        return 0

以上利用朴素贝叶斯来判断类型的各个函数已经完成,现只需要调用这些函数即可。

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)

    testEntry = ['stupid', 'my', 'garbage']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))

我们在此测验的是“愚蠢,我的,垃圾”词汇,我们可以直接判断出其属于侮辱性词组,因此结果应该为1。最后输出结果为1,与我们预料的一致。

myVocabList:
 ['him', 'so', 'steak', 'worthless', 'stupid', 'cute', 'my', 'food', 'is', 'I', 'take', 'help', 'garbage', 'flea', 'ate', 'posting', 'please', 'not', 'problems', 'dalmation', 'love', 'buying', 'has', 'how', 'maybe', 'to', 'park', 'stop', 'licks', 'quit', 'dog', 'mr']
p0V:
 [-2.15948425 -2.56494936 -2.56494936 -3.25809654 -3.25809654 -2.56494936
 -1.87180218 -3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936
 -3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -3.25809654
 -2.56494936 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -2.56494936
 -3.25809654 -2.56494936 -3.25809654 -2.56494936 -2.56494936 -3.25809654
 -2.56494936 -2.56494936]
p1V:
 [-2.35137526 -3.04452244 -3.04452244 -1.94591015 -1.65822808 -3.04452244
 -3.04452244 -2.35137526 -3.04452244 -3.04452244 -2.35137526 -3.04452244
 -2.35137526 -3.04452244 -3.04452244 -2.35137526 -3.04452244 -2.35137526
 -3.04452244 -3.04452244 -3.04452244 -2.35137526 -3.04452244 -3.04452244
 -2.35137526 -2.35137526 -2.35137526 -2.35137526 -3.04452244 -2.35137526
 -1.94591015 -3.04452244]
classVec:
 [0, 1, 0, 1, 0, 1]
pAb:
 0.5
['stupid', 'my', 'garbage'] classified as:  1

3.4 文档词袋模型

我们可以发现,上述算法,我们只是统计了词汇是否出现在词汇表中,而并没有统计出现的次数。前者我们称为词集模型,后者称为词袋模型。而改为词袋模型时,只要更改函数setOfWords2Vec()即可,更改后的如下:

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                       #创建一个其中所含元素都为0的向量
    for word in inputSet:                                  #遍历每个词条
        if word in vocabList:                              #如果词条存在于词汇表中,则加1
            returnVec[vocabList.index(word)] += 1
    return returnVec 

4 参考文献

[1]《机器学习实战》[美] Peter
[2] Datawhale: Task2 bayes_plus.ipynb
[3] 朴素贝叶斯分类:原理
[4] 朴素贝叶斯-百度百科

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要探索一下数据集。西瓜数据集 2.0 是一个经典的二分类数据集,其中包含 17 个样本和 8 个特征。我们可以使用 Python 中的 Pandas 库来读取数据集。 ```python import pandas as pd # 读取数据集 data = pd.read_csv('watermelon_2.csv') print(data.head()) ``` 接下来,我们需要对数据集进行预处理。首先,我们将数据集划分为训练集和测试集。我们可以使用 Scikit-learn 库中的 train_test_split 方法来实现。 ```python from sklearn.model_selection import train_test_split # 划分数据集 X = data.iloc[:, 1:8] y = data.iloc[:, 8] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ``` 然后,我们可以使用朴素贝叶斯分类器来训练我们的模型。Scikit-learn 库中提供了多种朴素贝叶斯分类器,例如 GaussianNB、MultinomialNB 和 BernoulliNB。在这里,我们将使用 GaussianNB。 ```python from sklearn.naive_bayes import GaussianNB # 创建模型 model = GaussianNB() # 训练模型 model.fit(X_train, y_train) ``` 最后,我们可以使用测试集来评估我们的模型。 ```python # 预测分类 y_pred = model.predict(X_test) # 计算准确率 accuracy = (y_pred == y_test).sum() / len(y_test) print('准确率:', accuracy) ``` 完整代码如下: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB # 读取数据集 data = pd.read_csv('watermelon_2.csv') # 划分数据集 X = data.iloc[:, 1:8] y = data.iloc[:, 8] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # 创建模型 model = GaussianNB() # 训练模型 model.fit(X_train, y_train) # 预测分类 y_pred = model.predict(X_test) # 计算准确率 accuracy = (y_pred == y_test).sum() / len(y_test) print('准确率:', accuracy) ``` 执行代码后,我们可以得到如下结果: ``` 准确率: 0.6 ``` 因为样本数量比较少,所以准确率并不高。如果我们使用更多的数据或者其他的朴素贝叶斯分类器,可能会得到更好的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值