【Week 14 作业E】Q老师度假

题目描述

忙碌了一个学期的 Q老师 决定奖励自己 N 天假期。
假期中不同的穿衣方式会有不同的快乐值。
已知 Q老师 一共有 M 件衬衫,且如果昨天穿的是衬衫 A,今天穿的是衬衫 B,则 Q老师 今天可以获得 f[A]/[B] 快乐值。
在 N 天假期结束后,Q老师 最多可以获得多少快乐值?

输入格式

输入文件包含多组测试样例,每组测试样例格式描述如下:
第一行给出两个整数 N M,分别代表假期长度与 Q老师 的衬衫总数。(2 ≤ N ≤ 100000, 1 ≤ M ≤ 100)
接下来 M 行,每行给出 M 个整数,其中第 i 行的第 j 个整数,表示 f[i][j]。(1 ≤ f[i][j] ≤ 1000000)
测试样例组数不会超过 10。

输出格式

每组测试样例输出一行,表示 Q老师 可以获得的最大快乐值。

输入样例

3 2
0 1
1 0
4 3
1 2 3
1 2 3
1 2 3

输出样例

2
9

思路

天数连续,仍可以考虑动态规划。
令f[i][j]为第i天穿j衣服时获得的最大快乐值。
可得状态转移方程f[i][j]=max(f[i-1][k]+H[K][j])其中0<k<=M,很明显时间复杂度为O(NMK)=O(1e9)会TLE。
因此应对时间复杂度进行优化,可看出状态转移方程与矩阵运算很相似,只是把累加变成求max,乘变为加,
在这里插入图片描述
因此可考虑使用矩阵乘法的变式来求dp,而矩阵幂次可使用快速幂的方式进行优化。

代码

#include <iostream>
#include <string.h>
using namespace std;
const int M=100+10;
const int N=1e5+10;
int m,n;
struct Matrix{
	long long x[M][M];
	Matrix()
	{
		memset(x,0,sizeof(x));
	}
	Matrix(Matrix&b)
	{
		memcpy(x,b.x,sizeof(x));
	}
	Matrix operator*(Matrix&b)
	{
		Matrix ret;
		for(int i=0;i<m;i++)
		{
			for(int j=0;j<m;j++)
			{
				for(int k=0;k<m;k++)
					ret.x[i][j]=max(ret.x[i][j],x[i][k]+b.x[k][j]);
			}
		}
		return ret;
	}
}; 
Matrix quick_pow(Matrix a,int x)
{
	Matrix ret;
	while(x)
	{
		if(x&1)ret=ret*a;
		a=a*a;
		x>>=1;
	}
	return ret;
}
int main(int argc, char** argv) {
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		Matrix temp;
		for(int i=0;i<m;i++)
			for(int j=0;j<m;j++)
				scanf("%lld",&temp.x[i][j]);
		temp=quick_pow(temp,n-1);
		long long ans=0;
		for(int i=0;i<m;i++)
			for(int j=0;j<m;j++)
				ans=max(ans,temp.x[i][j]);
		printf("%lld\n",ans);
	}
	return 0;
}
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 黑客帝国 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读