【定位导航算法】粒子滤波基础认识

粒子滤波是一种基于贝叶斯概率和随机采样的估计算法,适用于非线性和非高斯噪声环境。它包括初始化、采样、预测、加权和重采样等步骤,有效避免了卡尔曼滤波的计算复杂性。然而,粒子滤波存在依赖初始状态、粒子退化等问题,常见的方法有SIR、RPF、APF、GPF和MPF等。马尔科夫模型是其理论基础,理解转移概率和状态空间对于应用至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

粒子滤波粒子核心思想:

-基于贝叶斯概率,随机采样+重要采样进行估算。
关键:重要性密度函数的选择。

粒子滤波步骤:

根据初始化状态变量 —>生成采样数据(按照一定的生成规则,如随机规则,均匀分布规则)—> 计算预测数据点(根据采样数据,及状态方程计算)—> 计算加权系数(根据实际观测值与根据每个预测点数据估算的输出值进行对比,计算加权系数,加权系数规则根据需求自定义)—>重新采样数据点(根据权重,重对前面采集的数据进行过滤,重新采样,权重小的少取,权重大的多取)—>估算真实数据(对重新采样的数据取均值,或用其他规则来定义估算;重新采样的数据作为下一个时刻的采样数据)

粒子滤波的优缺点

优点:计算量相对于卡尔曼计算小,不能计算协方差。
缺点:严重依赖于对初始状态的估计,可能很快收敛,也可能很快发散;有粒子退化问题,由于根据权重采样,又有粒子匮乏,丢失部分数据等问题。

粒子滤波常用方法

以下具体滤波方法还只作了基础了解,需要进一步理解应用。
1、经典粒子滤波(Sampling Importance Resampling,SIR)
补充:序贯重要性采样(sequential importance sampling

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值