画图工具:Matplotlib(3)

表格样式的创建


'''

表格视觉样式:Dataframe.style → 返回pandas.Styler对象的属性,具有格式化和显示Dataframe的有用方法

样式创建:
① Styler.applymap:elementwise → 按元素方式处理Dataframe
② Styler.apply:column- / row- / table-wise → 按行/列处理Dataframe
 
'''
样式

df.style

df = pd.DataFrame(np.random.randn(10,4),columns=['a','b','c','d'])
sty = df.style
print(sty,type(sty))
# 查看样式类型

sty
# 显示样式

在这里插入图片描述

按元素处理样式

df.style.applymap()

def if_neg_red(val):
    if val < 0:
        color = 'red'
    else:
        color = 'black'
    return('color:%s' % color)
df.style.applymap(if_neg_red)
# 创建样式方法,使得小于0的数变成红色

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Lelr7Zq0-1592116308632)(assets/49.png)]

按行/列处理样式

df.style.apply()

def highlight_max(s):
    is_max = s == s.max()
    #print(is_max)
    lst = []
    for v in is_max:
        if v:
            lst.append('background-color: yellow')
        else:
            lst.append('')
    return(lst)
df.style.apply(highlight_max, axis = 0, subset = ['b','c'])
# 创建样式方法,每列最大值填充黄色
# axis:0为列,1为行,默认为0
# subset:索引
样式索引、切片

subset = pd.IndexSlice[2:5,[‘b’, ‘d’]],表示切片的数据2~5行的b,d两列

# 第一种写法
df.style.apply(highlight_max, axis=1, subset=pd.IndexSlice[2:5, ['b', 'd']])
# 通过pd.IndexSlice[]调用切片

# 第二种写法
df[2:5].style.apply(highlight_max, subset = ['b', 'd'])
# 先索引行再做样式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zFkVE7Qd-1592116308636)(assets/50.png)]

表格显示控制

df.style.format()

按照百分比显示
df = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
print(df.head())
df.head().style.format("{:.2%}")

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9I28wfdK-1592116308640)(assets/51.png)]

显示小数点
df.head().style.format("{:.4f}")

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tmVdktJS-1592116308642)(assets/52.png)]

分列控制
df.head().style.format({'b': "{:.2%}", 'c': "{:.3f}"})

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oEaAeGvg-1592116308645)(assets/53.png)]

表格样式的调用

Style的内置样式的调用

定位空值
df = pd.DataFrame(np.random.rand(5,4),columns = list('ABCD'))
df['A'][2] = np.nan
df.style.highlight_null(null_color='red')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NPYamXes-1592116308648)(assets/55.png)]

色彩映射
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df.style.background_gradient(cmap='Reds', axis=0, low=0.5, high=1)
# cmap:颜色
# axis:映射参考,0为行,1以列
# low和high代表颜色的最高和最低

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ghjRifer-1592116308651)(assets/54.png)]

条形图
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df.style.bar(subset=['A', 'B'], color='#d65f5f', width=100)
# width:最长长度在格子的占比

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GWxwmW9a-1592116308654)(assets/56.png)]

分段式构建样式
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df['A'][[3,2]] = np.nan
df.style.\
    bar(subset=['A', 'B'], color='#d65f5f', width=100).\
    highlight_null(null_color='yellow')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-glgJJHRg-1592116308655)(assets/57.png)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值