表格样式的创建
'''
表格视觉样式:Dataframe.style → 返回pandas.Styler对象的属性,具有格式化和显示Dataframe的有用方法
样式创建:
① Styler.applymap:elementwise → 按元素方式处理Dataframe
② Styler.apply:column- / row- / table-wise → 按行/列处理Dataframe
'''
样式
df.style
df = pd.DataFrame(np.random.randn(10,4),columns=['a','b','c','d'])
sty = df.style
print(sty,type(sty))
# 查看样式类型
sty
# 显示样式
按元素处理样式
df.style.applymap()
def if_neg_red(val):
if val < 0:
color = 'red'
else:
color = 'black'
return('color:%s' % color)
df.style.applymap(if_neg_red)
# 创建样式方法,使得小于0的数变成红色
按行/列处理样式
df.style.apply()
def highlight_max(s):
is_max = s == s.max()
#print(is_max)
lst = []
for v in is_max:
if v:
lst.append('background-color: yellow')
else:
lst.append('')
return(lst)
df.style.apply(highlight_max, axis = 0, subset = ['b','c'])
# 创建样式方法,每列最大值填充黄色
# axis:0为列,1为行,默认为0
# subset:索引
样式索引、切片
subset = pd.IndexSlice[2:5,[‘b’, ‘d’]],表示切片的数据2~5行的b,d两列
# 第一种写法
df.style.apply(highlight_max, axis=1, subset=pd.IndexSlice[2:5, ['b', 'd']])
# 通过pd.IndexSlice[]调用切片
# 第二种写法
df[2:5].style.apply(highlight_max, subset = ['b', 'd'])
# 先索引行再做样式
表格显示控制
df.style.format()
按照百分比显示
df = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
print(df.head())
df.head().style.format("{:.2%}")
显示小数点
df.head().style.format("{:.4f}")
分列控制
df.head().style.format({'b': "{:.2%}", 'c': "{:.3f}"})
表格样式的调用
Style的内置样式的调用
定位空值
df = pd.DataFrame(np.random.rand(5,4),columns = list('ABCD'))
df['A'][2] = np.nan
df.style.highlight_null(null_color='red')
色彩映射
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df.style.background_gradient(cmap='Reds', axis=0, low=0.5, high=1)
# cmap:颜色
# axis:映射参考,0为行,1以列
# low和high代表颜色的最高和最低
条形图
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df.style.bar(subset=['A', 'B'], color='#d65f5f', width=100)
# width:最长长度在格子的占比
分段式构建样式
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))
df['A'][[3,2]] = np.nan
df.style.\
bar(subset=['A', 'B'], color='#d65f5f', width=100).\
highlight_null(null_color='yellow')