- 博客(28)
- 收藏
- 关注
原创 调研报告:英伟达GPU编程与优化
**减少分支开销**:尽量避免线程间的条件分支(if-else)语句,以减少分支发散带来的性能损失。- **内存共址(Coalescing)**:确保线程访问连续的内存地址,以提高内存带宽利用率。- **重叠计算与数据传输**:使用流(Stream)实现计算和数据传输的重叠,减少等待时间。- **使用共享内存**:相较于全局内存,共享内存的延迟更低,适用于线程块内的数据共享。- **最大化线程并行度**:通过增加线程数和优化线程调度,充分利用GPU的计算资源。
2024-08-07 14:16:50 223
原创 2021-06-14
量子逻辑门非门Y门非门让我们看一下我们的第一个量子逻辑门,即量子非门。毫无疑问,量子非门是经典非门的概括。在计算基础上,量子非门的作用与传统的非门类似,可以满足您的期望。也就是说,将∣0⟩状态变为∣1⟩,反之亦然:NOT∣0⟩ = ∣1⟩NOT∣1⟩ = ∣0⟩但是,计算基础状态并不是量子位唯一可能的状态。当我们将NOT门应用于一般的叠加状态时,会发生什么情况,即α∣0⟩ + β∣1⟩?实际上,它几乎完成了最简单的事情:它线性地作用于量子态,互换了∣0⟩和∣1⟩的作用:NOT(α∣0⟩ + β∣
2021-06-15 00:39:42 401
原创 量子计算 CMU lecture03纠缠的力量
量子计算 CMU lecture03纠缠的力量1 复制位1.1 无克隆定理1.2 EPR对2 量子隐形传态1 复制位在第二讲中,我们证明了每个量子电路都可以看作是作用在量子态空间上的幺正矩阵,并且描述了测量和部分测量的规则。在这堂课中,我们以这些想法为基础,来展示量子纠缠如何在某些环境下让量子计算机比经典计算机更具优势。1.1 无克隆定理首先,我们描述了一种量子计算并不优于经典计算的方法。在经典计算中,复制信息是非常容易的,即使是以可逆的方式。 这就引出了一个自然的问题:给定一个量子位∣ψ
2021-06-06 21:19:00 490 1
原创 pytorch杂记
pytorch杂记forward方法Conv2d方法GRU方法forward方法nn.Module中的forward方法没有实际内容,用于被子类的 forward() 方法覆盖,且 forward 方法在__call__方法中被调用:forward方法的具体流程:以一个Module为例:调用module的call方法module的call里面调用module的forward方法forward里面如果碰到Module的子类,回到第1步,如果碰到的是Function的子类,继续往下调用Func
2021-01-18 13:09:47 324
原创 Gradient Descent for one-hidden-layer-function(单隐藏层神经网络的梯度下降)
Gradient Descent for one-hidden-layer-function(单隐藏层神经网络的梯度下降)Problem descriptionAnswers to questionsProblem descriptionThis second computer programming assignment is to solve Computer programming of one-hidden-layer neural network with one-dimensional i
2021-01-18 12:41:11 266
原创 张量的索引切片
张量的索引切片张量的索引切片方式和numpy几乎是一样的。切片时支持缺省参数和省略号。可以通过索引和切片对部分元素进行修改。类似于数组的切片,但是又稍微有些不同:例如:a=torch.rand(4,3,28,28):dim=4的张量数据a(1)a[:2]:取第一个维度的前2个维度数据(不包括2);(2)a[:2,:1,:,:]:取第一个维度的前两个数据,取第二个维度的第一个数据,后两个维度全都取到;(3)a[:2,1:,:,:]:取第一个维度的前两个数据,取第二个维度的索引1到最后索引的数据(包含
2021-01-18 11:47:35 1226
原创 单隐藏层神经网络编程+无调包
Computer programming of one-hidden-layer neural network(No neural network packets were used)——单隐藏层神经网络编程+无调包1. Generate nnn equidistant data points within the interval [−1,1][-1,1][−1,1].——生成-1到1区间内的n个点,这n个点为Runge函数上的点2. Calculate the Loss function——计算loss
2020-10-25 12:07:37 744 1
转载 范数-Norm- the concept
范数-Norm- the concept向量的范数定义:常用的向量的范数:模型空间的限制向量的范数定义:1.向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。2.向量的范数是一个函数||x||, 满足:非负性||x|| >= 0,齐次性||cx|| = |c| ||x|| ,三角不等式||x+y|| <= ||x|| + ||y||。常用的向量的范数:*L1范数: ||x|| 为x向量各个元素绝对值之和。*L2范数: ||x||为x向量
2020-09-09 17:41:08 2633
原创 参照完整性以及实例
参照完整性参照完整性是对外键取值有效性得限制,以确保数据在另一个参照表得取值范围内。参照完整性要求外键得取值只能取参照表中得有效值或空值。如果在参考表中某一记录得主键被依赖表中得外部键参考,那么这一记录既不能删除,也不能修改其主键值,以确保关键字得一致性。(待更新)...
2020-09-07 15:12:58 7592
转载 超键、候选键、主键的区别和主键约束与唯一约束的区别
超键(super key):在关系中能唯一标识元组的属性集称为关系模式的超键候选键(candidate key):不含有多余属性的超键称为候选键主键(primary key):用户选作元组标识的一个候选键程序主键比如一个小范围的所有人,没有重名的,考虑以下属性身份证 姓名 性别 年龄身份证唯一,所以是一个超键姓名唯一,所以是一个超键(姓名,性别)唯一,所以是一个超键(姓名,性别,年龄)唯一,所以是一个超键–这里可以看出,超键的组合是唯一的,但可能不是最小唯一的身份证唯一,而且没有多余属性
2020-09-07 14:19:16 4455
转载 varchar(n)跟varchar(max)的区别
我们平常mysql数据库一些定长的字段用char, 一些不定长的数据用varchar,事实上,一般varchar的字段查询速度都比char高。 但是有一个问题,既然varchar的长度是根据实际数据的长度进行存储的,那为什么我们不能一直用varchar(8000)或者varchar(max)呢,总结了以下几点: 1、第一,数据库运行时,字段占据了内存空间以及磁盘空间,磁盘中是根据数据的实际长度(n:n+1, max:n*2)进行存储的,而varchar(n)则占据着内存的n长度字节的空间,max = 2^3
2020-09-07 13:17:07 7377
转载 期望、方差与协方差矩阵
期望、方差与协方差矩阵期望期望的性质条件期望方差方差的性质方差体现的向量性质协方差期望期望的性质条件期望方差一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。方差的性质方差体现的向量性质协方差方差和标准差反应的是一维数据的分布情况,那么如果要处理二维甚至更高维度的数据时该怎么办呢?协方差表示的是两个随机变量的关系,首先我们看下它的定义:协方差表示在多大程序上x和y会共同变化。简单来说就是如果两个随机变量的协方差>0,则两者是正相关的,结果为负
2020-09-07 10:11:13 6894
转载 希腊字母在数学计算中表示的含义
希腊字母在数学计算中表示的含义序号 大写 小写 英语音标注音 英文 汉语名称 常用指代意义 1 Α α /'ælfə/ alpha 阿尔法 角度、系数、角加速度、第一个、电离度、转化率 2 Β β /'bi:tə/ 或 /'beɪ...
2020-09-02 12:34:23 7178
原创 数据库example提醒(sid cid)
数据库example提醒在以下例子中Students(sid: string, name: string, login: string, age: integer, gpa:real)Courses(cid: string, cname:string, credits:integer)Enrolled(sid:string, cid:string, grade:string)sid:全拼为studentid为students的主键,不代表其他\color{#FF3030}{sid:全拼为stude
2020-08-31 17:41:41 6031
原创 分组和透视实战
分组和透视实战引入相关库参考网站数据获取获取延误时间最长Top102.计算延误和没有延误所占比例3.每一个航空公司延误的情况4.透视表功能引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame参考网站link='https://projects.fivethirtyeight.com/flights/'数据获取半个月的14列20万行的美国航班数据df=pd.read_csv('../ho
2020-08-16 11:57:56 8444 1
原创 透视表
透视表透视表引入相关库数据获取生成透视表透视表引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取df=pd.read_excel('../homework/sales-funnel.xlsx')dfAcount代表客户账户,Name代表客户名字,Rep代表销售代表名字,Manager代表销售代表老板名字,Product代表卖出的产品,Quantity代表产品质量,Price代
2020-08-16 11:00:33 8417
原创 数据聚合技术Aggregation
数据聚合技术Aggregation数据聚合技术Aggregation引入相关库数据获取数据聚合数据聚合技术Aggregation引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取df=pd.read_csv('../homework/city_weather.csv')g=df.groupby('city')数据聚合通过agg函数求最大值g.agg('max')
2020-08-15 11:48:01 9922
原创 数据分组技术GroupBy
数据分组技术GroupBy数据分组技术GroupBy引入相关库数据获取数据分组技术GroupBy引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取df=pd.read_csv('../homework/city_weather.csv')df date city temperature wind
2020-08-15 00:00:09 9102
原创 数据分箱技术Binning
数据分箱技术Binning数据分箱技术Binning引入相关库数据获取数据分箱数据分箱技术Binning引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取产生一些考试的成绩分数,一共20个数据在25到100之间score_list=np.random.randint(25,100,size=20)score_listarray([66, 40, 32, 55, 81, 91
2020-08-14 20:33:26 9783
原创 时间序列数据的采样和画图
时间序列数据的采样和画图时间序列数据的采样和画图引入相关库时间序列数据的采样时间序列数据的画图时间序列数据的采样和画图引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame时间序列数据的采样使用date_range创建一个datetime对象,从2016-01-01开始,以天为间隔,一共366天t_range=pd.date_range('2016-01-01','2016-12-31')
2020-08-14 20:09:11 11171
原创 时间序列的操作基础
时间序列的操作基础时间序列的操作基础引入相关库创建datetime对象访问datetime元素通过date_range来产生一段时间范围以内的datetime时间序列的操作基础引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame引入datetime库from datetime import datetime创建datetime对象创建一个datetime,传入年月日参数t1=date
2020-08-13 21:11:19 9553
原创 通过去重进行数据清洗
通过去重进行数据清洗通过去重进行数据清洗引入相关库数据获取数据清洗通过去重进行数据清洗引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取df=pd.read_csv('../homework/demo_duplicate.csv')df.head() Unnamed: 0 Price Seqno
2020-08-13 13:07:00 9430
原创 通过apply进行数据预处理
通过apply进行数据预处理通过apply进行数据预处理引入相关库数据获取数据分割处理数据删除处理通过apply进行数据预处理引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrame数据获取读取csv文件,通过head看DataFrame的数据,有两列df=pd.read_csv('../homework/apply_demo.csv')df.head()
2020-08-12 19:36:54 9234
原创 Concatenate和Combine
Concatenate和CombineConcatenate和Combine引入相关库ConcatenateMatrix的concatenateSeries的concatenateDataFrame的concatenateCombineSeries的CombineDataFrame的combineConcatenate和Combine引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrameConc
2020-08-12 19:11:51 9050
原创 DataFrame的merge操作
DataFrame的merge操作DataFrame的merge操作引入相关库merge操作on方法how方法url链接DataFrame的merge操作引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFramemerge操作创建一个两个DataFramedf1=DataFrame({'key':['X','Y','Z','X'],'data_set_1':[1,2,3,4]})df1
2020-08-12 18:46:36 12121
原创 重命名DataFrame的index
重命名DataFrame的index重命名DataFrame的index引入相关库DataFrame的index的重命名map的回顾重命名DataFrame的index引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrameDataFrame的index的重命名创建一个3*3的DataFramedf1=DataFrame(np.arange(9).reshape(3,3),index=['BJ
2020-08-08 23:45:57 12307 1
原创 Series和DataFrame的排序
Series和DataFrame的排序Series和DataFrame的排序引入相关库Series的排序DataFrame的排序Series和DataFrame的排序引入相关库import numpy as npimport pandas as pdfrom pandas import Series,DataFrameSeries的排序创建一个随机的长度为10的Seriess1=Series(np.random.randn(10))s10 0.6141741 -0.5951
2020-08-08 22:08:38 9637 1
原创 Series和DataFrame的简单数学运算
Series和DataFrame的简单数学运算Series和DataFrame的简单数学运算操作学习引入相关库Series的数学运算DataFrame的运算DataFrame内置的运算Series和DataFrame的简单数学运算操作学习import numpy as npimport pandas as pdfrom pandas import Series,DataFrame引入相关库import numpy as npimport pandas as pdfrom pandas imp
2020-08-08 13:27:11 10045 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人