量子计算 CMU lecture03纠缠的力量

1 复制位

在第二讲中,我们证明了每个量子电路都可以看作是作用在量子态空间上的幺正矩阵,并且描述了测量和部分测量的规则。在这堂课中,我们以这些想法为基础,来展示量子纠缠如何在某些环境下让量子计算机比经典计算机更具优势。

1.1 无克隆定理

首先,我们描述了一种量子计算并不优于经典计算的方法。在经典计算中,复制信息是非常容易的,即使是以可逆的方式。

这就引出了一个自然的问题:给定一个量子位 ∣ ψ ⟩ = α ∣ 0 ⟩ + β ∣ 1 ⟩ |\psi⟩=\alpha|0⟩+\beta|1⟩ ψ=α0+β1,可以复制 ∣ ψ ⟩ |\psi⟩ ψ来让两个无缠结的量子位各有一个 ∣ ψ ⟩ |\psi⟩ ψ吗?这就要求两个量子位处于一个联合状态 ∣ ψ ⟩ ⊗ ∣ ψ ⟩ |\psi⟩⊗|\psi⟩ ψψ。作为第一次尝试,上面的经典电路似乎也满足了我们在量子环境中的需要。

为了检查,在CNOT门之前,量子比特处于 ( α ∣ 0 ⟩ + β ∣ 1 ⟩ ⊗ ( ∣ 0 ⟩ ) = α ∣ 00 ⟩ + β ∣ 10 ⟩ (\alpha|0⟩+\beta|1⟩⊗(|0⟩)=\alpha|00⟩+\beta|10⟩ (α0+β1(0)=α00+β10的联合状态。在CNOT门之后,量子比特就处于 α ∣ 00 ⟩ + β ∣ 11 ⟩ \alpha|00⟩+\beta|11⟩ α00+β11的联合状态。不幸的是,这并不等于我们所期望的状态
∣ ψ ⟩ ⊗ ∣ ψ ⟩ = α 2 ∣ 00 ⟩ + α β ∣ 01 ⟩ + α β ∣ 10 ⟩ + β 2 ∣ 11 ⟩ = [ α 2 α β α β β 2 ] |\psi⟩⊗|\psi⟩ =\alpha^2|00⟩+\alpha\beta|01⟩ + \alpha\beta|10⟩+\beta^2|11⟩ =\begin{bmatrix}\alpha^2\\\alpha\beta\\\alpha\beta\\\beta^2\\\end{bmatrix} ψψ=α200+αβ01+αβ10+β211=α2αβαββ2
除非 α = 1 \alpha=1 α=1 β = 0 \beta=0 β=0 α = 0 \alpha=0 α=0 β = 1 \beta=1 β=1.即,上述电路未能将任意量子态复制成两个无缠结的副本。事实证明,不存在任何能接收任意量子位 ∣ ψ ⟩ |\psi⟩ ψ并产生 ∣ ψ ⟩ ⊗ ∣ ψ ⟩ |\psi⟩⊗|\psi⟩ ψψ的量子电路,即使允许在输入中使用辅助位,在输出中使用垃圾位。这个结果被称为不可克隆定理,这是由Wootters和Zurek[WZ82]得出的(另见[dW11])。
定理1.1(无克隆定理)。所有 n ∈ N n∈\mathbb{N} nN,不存在一个量子电路 C \mathbb{C} C在输入时 ∣ ψ ⟩ ⊗ ∣ 0 n − 1 ⟩ |\psi⟩⊗|0^{n-1}⟩ ψ0n1时,输出 ∣ ψ ⟩ ⊗ ∣ ψ ⟩ ⊗ f ( ∣ ψ ⟩ ) |\psi⟩⊗|\psi⟩⊗f(|\psi⟩) ψψf(ψ) ,其中 f ( ∣ ψ ⟩ ) f(|\psi⟩) f(ψ)(垃圾)是n−2量子比特的可能纠缠态。
备注1.2。我们可以假设辅助都是 ∣ 0 ⟩ |0⟩ 0,因为我们可以使用非门来获得一个 ∣ 1 ⟩ |1⟩ 1。另外,我们可以假设 C \mathbb{C} C中没有测量,因为我们可以将所有测量推迟到计算结束,而且我们肯定不想测量输出的前两个量子位。
证明。为了矛盾起见,假设这样一个 C \mathbb{C} C存在。设 U U U是表示 C C C的幺正矩阵。我们知道 U ( ∣ 0 n ⟩ ) = ∣ 00 ⟩ ⊗ f ( ∣ 0 ⟩ ) U(|0^n⟩)=|00⟩⊗ f(|0⟩) U(0n)=00f(0) U ( ∣ 1 ⟩ ⊗ ∣ 0 n − 1 ⟩ ) = ∣ 11 ⟩ ⊗ f ( ∣ 1 ⟩ ) U(|1⟩⊗|0^{n-1}⟩)=|11⟩⊗ f(|1⟩) U(10n1)=11f(1)。记住 ∣ + ⟩ = 1 2 ∣ 0 ⟩ + 1 2 ∣ 1 ⟩ |+⟩=\frac{1}{\sqrt{2}}|0⟩+\frac{1}{\sqrt{2}}|1⟩ +=2 10+2 11。根据 U U U的线性度,
U ( ∣ + ⟩ ⊗ ∣ 0 n − 1 ⟩ ) = 1 2 U ∣ 0 n ⟩ + 1 2 U ( ∣ 1 ⟩ ⊗ ∣ 0 n − 1 ⟩ ) = 1 2 ∣ 00 ⟩ ⊗ f ( ∣ 0 ⟩ ) + 1 2 ∣ 11 ⟩ ⊗ f ( ∣ 1 ⟩ ) U(|+⟩⊗|0^{n-1}⟩)=\frac{1}{\sqrt{2}}U|0^n⟩+\frac{1}{\sqrt{2}}U(|1⟩⊗|0^{n-1}⟩)=\frac{1}{\sqrt{2}}|00⟩⊗f(|0⟩) +\frac{1}{\sqrt{2}}|11⟩⊗f(|1⟩) U(+0n1)=2 1U0n+2 1U(10n1)=2 100f(0)+2 111f(1)
因此,如果我们测量前两个量子位,我们得到的状态 ∣ 00 ⟩ |00⟩ 00的概率为1/2,而 ∣ 11 ⟩ |11⟩ 11的概率为1/2。如果 U U U正确地复制了 ∣ + ⟩ |+⟩ +,我们应该看到 ∣ 00 ⟩ |00⟩ 00 ∣ 10 ⟩ |10⟩ 10 ∣ 01 ⟩ |01⟩ 01 ∣ 11 ⟩ |11⟩ 11的概率为1/4。因此, U U U未能复制 ∣ + ⟩ |+⟩ +,因此不存在具有所需性质的幺正U或电路C。
尽管这个结果一开始看起来可能令人不安,但在随机计算模型中有一个直观的类似结果:没有一个电路可以将单个p偏置随机位(比如从 C O I N p COIN_p COINp门)作为输入,并返回两个独立分布的p偏置位作为输出。

1.2 EPR对

考虑下面对经典位复制电路的修改。

这个门的输出就是量子态 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111。这种纠缠态被称为EPR对,以Einstein、Podolsky和 Rosen的名字命名[EPR35]。Einstein虽然不相信EPR对的存在,但通过实验(如[AGR81])证实了它们的存在。EPR对将在整个课程中出现很多次,包括本课中的几次。
假设我们经过一对EPR对 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111通过量子门 H ⊗ H H⊗H HH;也就是说,我们对每个量子位应用一个单独的Hadamard门。回想一下 H ∣ 0 ⟩ = ∣ + ⟩ = 1 2 ∣ 0 ⟩ + 1 2 ∣ 1 ⟩ H|0⟩=|+⟩=\frac{1}{\sqrt{2}}|0⟩+\frac{1}{\sqrt{2}}|1⟩ H0=+=2 10+2 11 H ∣ 1 ⟩ = ∣ − ⟩ = 1 2 ∣ 0 ⟩ − 1 2 ∣ 1 ⟩ H|1⟩=|-⟩=\frac{1}{\sqrt{2}}|0⟩-\frac{1}{\sqrt{2}}|1⟩ H1==2 102 11。因此,我们有
( H ⊗ H ) ( 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ ) = 1 2 ( ∣ + ⟩ ⊗ ∣ + ⟩ ) + 1 2 ( ∣ − ⟩ ⊗ ∣ − ⟩ ) = 1 2 ( 1 2 ∣ 0 ⟩ + 1 2 ∣ 1 ⟩ ) ⊗ ( 1 2 ∣ 0 ⟩ + 1 2 ∣ 1 ⟩ ) + 1 2 ( 1 2 ∣ 0 ⟩ − 1 2 ∣ 1 ⟩ ) ⊗ ( 1 2 ∣ 0 ⟩ − 1 2 ∣ 1 ⟩ ) = 1 2 2 ∣ 00 ⟩ + 1 2 2 ∣ 01 ⟩ + 1 2 2 ∣ 10 ⟩ + 1 2 2 ∣ 11 ⟩ + 1 2 2 ∣ 00 ⟩ − 1 2 2 ∣ 01 ⟩ − 1 2 2 ∣ 10 ⟩ + 1 2 2 ∣ 11 ⟩ = 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ (H⊗H) (\frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩)=\frac{1}{\sqrt{2}}(|+⟩⊗|+⟩)+\frac{1}{\sqrt{2}}(|-⟩⊗|-⟩)\\=\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}|0⟩+\frac{1}{\sqrt{2}}|1⟩)⊗(\frac{1}{\sqrt{2}}|0⟩+\frac{1}{\sqrt{2}}|1⟩)+\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}|0⟩-\frac{1}{\sqrt{2}}|1⟩)⊗(\frac{1}{\sqrt{2}}|0⟩-\frac{1}{\sqrt{2}}|1⟩)\\=\frac{1}{2\sqrt{2}}|00⟩+\frac{1}{2\sqrt{2}}|01⟩+\frac{1}{2\sqrt{2}}|10⟩+\frac{1}{2\sqrt{2}}|11⟩+\frac{1}{2\sqrt{2}}|00⟩-\frac{1}{2\sqrt{2}}|01⟩-\frac{1}{2\sqrt{2}}|10⟩+\frac{1}{2\sqrt{2}}|11⟩\\=\frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ (HH)(2 100+2 111)=2 1(++)+2 1()=2 1(2 10+2 11)(2 10+2 11)+2 1(2 102 11)(2 102 11)=22 100+22 101+22 110+22 111+22 10022 10122 110+22 111=2 100+2 111
这是我们原来的EPR对!一般来说,量子态的记账可能相当不真实。

2 量子隐形传态

想象一下,两位计算机科学家,Alice和Bob,各自有一个量子比特被初始化为经典态|0⟩,他们决定将自己的量子比特纠缠成EPR对。因此,他们的联合状态是 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111,其中第一个量子位是Alice的,第二个是Bob的。

现在,即使Alice和Bob的量子位在物理上是分开的(比如说他们把量子位带到自己home里),只要两个量子位都不进行测量,那么这两个量子位仍然是EPR对。另外,假设爱丽丝有一个量子比特 ∣ ψ ⟩ = α 0 ∣ 0 ⟩ + α 1 ∣ 1 ⟩ |\psi⟩=\alpha_0|0⟩+\alpha_1|1⟩ ψ=α00+α11在她家,她想给Bob ∣ ψ ⟩ |\psi⟩ ψ。她不用离开home就能做到。
一个看似合理的想法是,她决定了 α 0 \alpha_0 α0 α 1 \alpha_1 α1的值并通过一个经典频道(比如通过电话)将这些值告诉Bob。这个想法有两个问题。首先,Alice如果没有进行测量不知道 α 0 \alpha_0 α0 α 1 \alpha_1 α1是什么,这会导致她失去 ∣ ψ ⟩ |\psi⟩ ψ。第二,即使她因为它们位于 C 2 \mathbb{C}^2 C2知道 α 0 \alpha_0 α0 α 1 \alpha_1 α1是什么,但她需要无限多位的精度才能准确地告诉Bob α 0 \alpha_0 α0 α 1 \alpha_1 α1是什么。
相反,Alice可以巧妙地发送 ∣ ψ ⟩ |\psi⟩ ψ和她一半的EPR对通过下面的量子电路。

在电路开始时,这三个量子位处于
∣ ψ ⟩ ⊗ ( 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ ) = α 0 2 ∣ 011 ⟩ + α 0 2 ∣ 000 ⟩ + α 1 2 ∣ 100 ⟩ + α 1 2 ∣ 111 ⟩ . |\psi⟩⊗(\frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩)=\frac{\alpha_0}{\sqrt{2}}|011⟩+\frac{\alpha_0}{\sqrt{2}}|000⟩+\frac{\alpha_1}{\sqrt{2}}|100⟩+\frac{\alpha_1}{\sqrt{2}}|111⟩. ψ(2 100+2 111)=2 α0011+2 α0000+2 α1100+2 α1111.
在量子比特通过量子门之后,但在测量之前,电路的状态最终是
α 0 2 ∣ 000 ⟩ + α 1 2 ∣ 001 ⟩ + α 1 2 ∣ 010 ⟩ + α 0 2 ∣ 011 ⟩ + α 0 2 ∣ 100 ⟩ − α 1 2 ∣ 101 ⟩ − α 1 2 ∣ 110 ⟩ + α 0 2 ∣ 111 ⟩ . \frac{\alpha_0}{2}|000⟩+\frac{\alpha_1}{2}|001⟩+\frac{\alpha_1}{2}|010⟩+\frac{\alpha_0}{2}|011⟩+\frac{\alpha_0}{2}|100⟩-\frac{\alpha_1}{2}|101⟩-\frac{\alpha_1}{2}|110⟩+\frac{\alpha_0}{2}|111⟩. 2α0000+2α1001+2α1010+2α0011+2α01002α11012α1110+2α0111.
在Alice测量了她的两个量子位之后。可能的状态是什么?下表总结了这些问题。记得 ∣ α 0 ∣ 2 + ∣ α 1 ∣ 2 = 1 |\alpha_0|^2+|\alpha_1|^2=1 α02+α12=1

注意,对于Alice所做的每一个可能的部分测量,Bob量子位的结果状态都等于或非常接近Alice的原始状态 ∣ ψ ⟩ |\psi⟩ ψ。为了完成这项工作,Alice可以打电话给Bob,告诉他她的部分测量是多少。Bob接下来要做的事情分成四个部分。

因此,只用一个EPR对和两个经典比特,Alice就可以把她的量子态发送给Bob。这个实验并没有违反不克隆定理,因为Alice不再有量子态的副本。此外,这并不违反爱因斯坦的狭义/广义相对论,因为必要的经典位元的传播速度不可能超过光速。不过,我们可以用下面的思维实验来反驳这一点。想象一下,在Alice测量他的量子位元之后,Bob立即测量了他的量子位元(比光从Alice家到Bob家所需的时间还要快)。难道Bob没有比光速更快地了解 ∣ ψ ⟩ |\psi⟩ ψ吗?原来这个问题的答案是否定的。在Alice通过量子电路发送她的量子比特之前,如果Bob要测量他的EPR对,他会看到概率为1/2的|0⟩和概率为1/2的|1⟩。在Alice使用她的量子电路(包括测量)之后,Bob在测量之后看到|0⟩的概率是
1 4 ∣ α 0 ∣ 2 + 1 4 ∣ α 1 ∣ 2 + 1 4 ∣ α 0 ∣ 2 + 1 4 ∣ − α 1 ∣ 2 = 1 2 ( ∣ α 0 ∣ 2 + ∣ α 1 ∣ 2 ) = 1 2 \frac{1}{4}|\alpha_0|^2+\frac{1}{4}|\alpha_1|^2+\frac{1}{4}|\alpha_0|^2+\frac{1}{4}|-\alpha_1|^2=\frac{1}{2}(|\alpha_0|^2+|\alpha_1|^2)=\frac{1}{2} 41α02+41α12+41α02+41α12=21(α02+α12)=21
这概率和以前完全一样。因此,除非Alice告诉Bob她的两个经典比特,否则Bob就从 ∣ ψ ⟩ |\psi⟩ ψ中什么也学不到,因此相对论在这个例子中没有被违背。
事实证明,这种称为量子隐形传态的过程(见[Die82])不仅在理论上有效,而且在实践中也得到了验证。Bennett等人于1992年首次证实了这一点[BBC+93]。2012年,马等[MHS+12]在143公里的距离上进行了量子隐形传态。量子隐形传态的一个缺点是它不能帮助人们“相信”量子力学。也就是说,为了解释这些实验的结果,人们需要已经接受量子力学。很快,我们讨论了另一个叫做CHSH游戏的实验,它确实给出了我们的世界是量子力学的确凿证据。

3 在不同的基础上测量

3.1 正交基测量

当我们写 ∣ ψ ⟩ = α 0 ∣ 0 ⟩ + α 1 ∣ 1 ⟩ |\psi⟩=\alpha_0|0⟩+\alpha_1|1⟩ ψ=α00+α11的时候,我们表示 ∣ ψ ⟩ |\psi⟩ ψ以基{|0⟩,|1⟩}表示的。这个基称为标准基或计算基。当我们测量 ∣ ψ ⟩ = α 0 ∣ 0 ⟩ + α 1 ∣ 1 ⟩ |\psi⟩=\alpha_0|0⟩+\alpha_1|1⟩ ψ=α00+α11,我们以概率 ∣ α 0 ∣ 2 |\alpha_0|^2 α02看到|0⟩和 ∣ α 1 ∣ 2 |\alpha_1|^2 α12的概率看到|1⟩。既然 α 0 = ⟨ 0 ∣ ψ ⟩ \alpha_0=⟨0|\psi⟩ α0=0ψ α 1 = ⟨ 1 ∣ ψ ⟩ \alpha_1=⟨1|\psi⟩ α1=1ψ、 我们可以把这些概率改写为

想象一下 α 0 , α 1 ∈ R \alpha_0, \alpha_1\in \mathbb{R} α0,α1R,这样我们就可以想象 ∣ ψ ⟩ = [ α 0 α 1 ] |\psi⟩=\begin{bmatrix}\alpha_0\\\alpha_1\\\end{bmatrix} ψ=[α0α1]作为单位圆上的向量。

如果我们投影 ∣ ψ ⟩ |\psi⟩ ψ x x x(或|0⟩)轴上,所得向量的长度为 ∣ α 0 ∣ 2 |\alpha_0|^2 α02。此外,从 ∣ ψ ⟩ |\psi⟩ ψ到投影距离的是 ∣ α 1 ∣ 2 |\alpha_1|^2 α12。由于直角三角形的两个结果线段,我们从毕达哥拉斯定理得到 ∣ α 0 ∣ 2 + ∣ α 1 ∣ 2 = 1 |\alpha_0|^2+|\alpha_1|^2=1 α02+α12=1,这是一个熟悉的公式。
我们可以把这个类比推广到任意正交基 { ∣ v ⟩ , ∣ v ⊥ ⟩ } {\{|v⟩,|v^⊥⟩\}} {vv}。如果我们写 ∣ ψ ⟩ = β v ∣ v ⟩ + β v ⊥ ∣ v ⊥ ⟩ |\psi⟩=\beta_v|v⟩+\beta_{v^⊥}|v^⊥⟩ ψ=βvv+βvv,那我们就有 β v = ⟨ v ∣ ψ ⟩ \beta_v=⟨v|\psi⟩ βv=vψ β v ⊥ = ⟨ v ⊥ ∣ ψ ⟩ \beta_{v^⊥}=⟨v^⊥|\psi⟩ βv=vψ。因此,投影 ∣ ψ ⟩ |\psi⟩ ψ到向量|v⟩和|v^⊥⟩得到了一个有legs ∣ β v ⟩ |\beta_v⟩ βv ∣ β v ⊥ ⟩ |\beta_v^⊥⟩ βv的直角三角形。
注意,自从 { v , v ⊥ } {\{v,v^⊥}\} {vv} 是正交基,

因此,很自然的讨论一个用概率 ∣ β v ∣ 2 |\beta_v|^2 βv2表示“ ∣ v ⟩ |v⟩ v”用概率 ∣ β v ⊥ ∣ 2 |\beta_{v^⊥}|^2 βv2表示“ ∣ v ⊥ ⟩ |v^⊥⟩ v”的概率分布是很自然的。这实际上是在不同的基础上进行测量的定义。
定义3.1。让 { v , v ⊥ } {\{v,v^⊥\}} {vv}是正交基。测量的过程 ∣ ψ ⟩ = β v ∣ v ⟩ + β v ⊥ ∣ v ⊥ ⟩ |\psi⟩=\beta_v|v⟩+\beta_{v^⊥}|v^⊥⟩ ψ=βvv+βvv在基础{v,v⊥} 上是一种量子电路,其测量值在输入 ∣ ψ ⟩ |\psi⟩ ψ时以 ∣ β v ∣ 2 |\beta_v|^2 βv2概率输出|0⟩(表示“ ∣ v ⟩ |v⟩ v”的答案) β v ⊥ \beta_{v^⊥} βv的概率输出|1⟩(表示“ ∣ v ⊥ ⟩ |v^⊥⟩ v”的答案)。
事实证明,一个简单的量子电路允许我们在 { v , v ⊥ } {\{v,v^⊥\}} {vv}基础上测量, 它由一个量子门U和一个测量单元组成。很明显,这个门应该具有 U ∣ v ⟩ = ∣ 0 ⟩ U|v⟩=|0⟩ Uv=0 U ∣ v ⊥ ∣ = ∣ 1 ⟩ U|v^⊥|=|1⟩ Uv=1。如第2课所讨论的,我们必须得到 U = ∣ 0 ⟩ ⟨ v ∣ + ∣ 1 ⟩ ⟨ v ⊥ ∣ U=|0⟩⟨v|+|1⟩⟨v^⊥| U=0v+1v。很容易看出如果 ∣ ψ ⟩ = β v ∣ v ⟩ + β v ⊥ ∣ v ⟩ |\psi⟩=\beta_v|v⟩+\beta_{v^⊥}|v⟩ ψ=βvv+βvv,然后测量 U ∣ ψ ⟩ = β v ∣ 0 ⟩ + β v ⊥ ∣ 1 ⟩ U|\psi⟩=\beta_v|0⟩+\beta_{v^⊥}|1⟩ Uψ=βv0+βv1产生|0⟩概率为 ∣ β v ∣ 2 |\beta_v|^2 βv2产生|1⟩的概率为 ∣ β v ⊥ ∣ 2 |\beta_{v^⊥}|^2 βv2,根据需要。
备注3.2。量子计算中的一个标准假设是,所有的幺正1量子位和2量子位门都可以按单位成本使用。这是没有必要的,因为任何1量子位或2量子位门都可以用辅助门、CCNOT门和Hadamard门模拟到任意精度;但是这个假设使得量子电路更容易推理。

3.2 例子

通常,我们要测量的基准是标准基准的逆时针旋转一个角度θ。因此,我们想要测量的基矩阵的变化是顺时针旋转矩阵的角度θ, 我们称之为 R o t θ Rot_θ Rotθ

考虑一对正交基 { v , v ⊥ } {\{v,v^⊥\}} {vv} { w , w ⊥ } {\{w,w^⊥\}} {ww}使 { v , v ⊥ } {\{v,v^⊥\}} {vv}是一个θ 弧度逆时针旋转的标准基,和 { w , w ⊥ } {\{w,w^⊥\}} {ww}是一个γ 弧度以逆时针旋转的标准基。

因此,幺正矩阵V允许我们在基 { v , v ⊥ } {\{v,v^⊥\}} {vv}上测量对应于顺时针旋转θ, V = R o t θ V=Rot_θ V=Rotθ。类似地,幺正矩阵W允许我们在基 { w , w ⊥ } {\{w,w^⊥\}} {ww}上测量, W = R o t γ W=Rot_γ W=Rotγ. 再想象一下,Alice和Bob共用一对EPR 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}| 00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111(Alice拥有第一个量子位,Bob拥有第二个量子位)。如果Alice把V加到她的量子比特上,Bob把W加到他的量子比特上。

由此产生的状态可以用下面的引理来概括。
引理3.3。让 θ θ θ以及 γ γ γ成为角,让 ∆ = θ − γ ∆=θ−γ =θγ。那么,

证明。这一结果可以通过直接计算得到验证。

注意这是 θ = γ θ=γ θ=γ, 那么 ∆ = 0 ∆=0 =0,结果状态为 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111,这意味着操作恢复了原始EPR对。因此,当Alice和Bob在相同的基础上测量EPR对时,它们总是得到相同的结果。关于量子位的测量,引理很容易得出如下推论。
推论3.4。对应用 R o t θ ⊗ R o t γ Rot_θ ⊗ Rot_γ RotθRotγEPR后进行测量。处于坍缩状态的两个量子位具有相同值的概率是 c o s 2 ∆ = c o s 2 ( θ − γ ) cos^2∆=cos^2(θ −γ) cos2=cos2(θγ)。同样,两个量子位坍缩成不同状态的概率是 s i n 2 ∆ sin^2∆ sin2
证明。测量|00⟩的概率为 1 2 c o s 2 ∆ \frac{1}{2}cos^2∆ 21cos2。同样,测量|11⟩的概率为 1 2 c o s 2 ∆ \frac{1}{2}cos^2∆ 21cos2. 因此,两个量子位坍缩成相同值的概率是 c o s 2 ∆ cos^2∆ cos2. 这直接意味着量子比特坍缩成不同值的概率是 1 − c o s 2 ∆ 1−cos^2∆ 1cos2= s i n 2 ∆ sin^2∆ sin2.
如果 ∆ = π / 2 ∆=π/2 =π/2,那么两个量子位坍缩成不同值的概率是1。这是有意义的,因为Alice和Bob测量的基是一个π/2相互旋转。

4 CHSH 比赛

为了证明纠缠的力量,我们讨论了量子计算如何在下面的组合博弈中给玩家一个优势。这样的游戏被约翰·贝尔(JohnBell)[Bel64]发现,克劳瑟等人(Clauser,et al.,[CHSH69])提出。

4.1 博弈公式

定义4.1。CHSH比赛由两名运动员Alice和Bob组成,由两名裁判(裁判1和裁判2)协助。Alice和Bob相隔足够远(比如说1光秒),因此他们在比赛中无法相互交流,但是Alice和Ref.1足够接近,Bob和Ref.2足够接近。在游戏开始时,Ref.1和Ref.2分别选择一致的随机位 x , y ∈ { 0 , 1 } x,y\in {\{0,1}\} x,y{01}。Ref.1告诉Alice x x x,Ref.2告诉Bob y y y。Alice用一位 a ∈ { 0 , 1 } a\in{\{0,1\}} a{01}来回应且Bob将一位 b ∈ { 0 , 1 } b\in{\{0,1\}} b{01}来回应。Alice和Bob赢的条件是有且只有 a ⊗ b = x ∧ y a⊗b=x∧y ab=xy

另一种表达获胜条件的方法是,当 ( x , y ) ≠ ( 1 , 1 ) (x,y)\neq(1,1) (x,y)=(1,1)时,Alice和Bob必须产生相同的位,否则必须产生不同的位。Alice和Bob可以事先同意一项策略。

4.2 经典策略

我们很容易想出一个策略,让Alice和Bob以3/4的概率获胜:让两个玩家总是以0作为回应。结果证明,没有哪个经典策略能做得更好。
引理4.2。没有经典的确定性或随机策略,允许Alice和Bob以大于3/4的概率获胜。
证明。首先,我们证明了任何确定性策略都会导致Alice和Bob在最多3/4的时间内获胜。在确定性策略中,Alice的位a必须是其随机位x的函数。因此,Alice必须选择 a ( x ) = 0 , a ( x ) = 1 , a ( x ) = x a(x)=0,a(x)=1,a(x)=x a(x)=0a(x)=1ax=x a ( x ) = ¬ x a(x)=¬x a(x)=¬x。类似地,Bob必须在 b ( y ) = 0 , b ( y ) = 1 , b ( y ) = y 和 b ( y ) = ¬ y b(y)=0,b(y)=1,b(y)=y和b(y)=¬y b(y)=0b(y)=1b(y)=yb(y)=¬y之间进行选择。
下表总结了每对策略的获胜概率。

因此,不存在超过3/4的确定性策略,因为任何随机化策略都是这些确定性策略的概率分布,所以随机化分布所能做的最好也是3/4。

4.3 量子策略

我们现在展示如何使用量子策略打败3/4。为了使这个量子策略起作用,我们将让Alice和Bob各自共享一个EPR对的量子位。Alice和Bob将根据它们接收到的随机比特,独立决定在EPR对中测量它们的量子位的依据。通过利用EPR对的相关性,Alice和Bob将获得显著大于3/4的获胜概率。
定理4.3。有一个量子策略,允许Alice和Bob赢的概率为 c o s 2 ( π / 8 ) ≈ . 85 > 3 / 4. cos^2(π/8) ≈ .85 > 3/4. cos2(π/8).85>3/4.
证明。让Alice和Bob共用一对EPR对 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ \frac{1}{\sqrt{2}}|00⟩+\frac{1}{\sqrt{2}}|11⟩ 2 100+2 111。Alice将测量她的量子位在任一基 { v 0 , v 0 ⊥ } = { ∣ 0 ⟩ , ∣ 1 ⟩ } {\{v_0,v^⊥_0\}}={\{|0⟩,|1⟩\}} {v0v0}={01} { ∣ v 1 ⟩ , ∣ v 1 ⊥ ⟩ } = { ∣ + ⟩ , ∣ − ⟩ } {\{|v_1⟩,|v^⊥_1⟩\}}={\{|+⟩,|-⟩\}} {v1v1}={+} ,这是一个π/4标准基的逆时针旋转。类似地,Bob将用 { ∣ w 0 ⟩ , ∣ w 0 ⊥ ⟩ } {\{|w_0⟩,|w^⊥_0⟩\}} {w0w0}来测量他的量子位这是一个π/8标准基的旋转或 { ∣ w 1 ⟩ , ∣ w 1 ⊥ ⟩ } {\{|w_1⟩,|w^⊥_1⟩\}} {w1w1}这是一个−π/8标准基础的旋转。

现在,当Alice和Bob分别接收到x和y时,Alice将以 { ∣ v x ⟩ , ∣ v x ⊥ ⟩ } {\{|v_x⟩,|v_x^⊥⟩\}} {vxvx}为基础进行测量确定a和Bob将根据 { ∣ w x ⟩ , ∣ w x ⊥ ⟩ } {\{|w_x⟩,|w_x^⊥⟩\}} {wxwx}确定B。应用推论3.4,我们发现可能的情况如下

当x=y=1时,我们取正弦,而不是余弦,因为在这种情况下我们需要 a ≠ b a\neq b a=b。在所有四种情况下,获胜的概率都等于 c o s 2 ( π / 8 ) cos^2(π/8) cos2(π/8),所以这就是预期的总体获胜概率。

4.4 实验验证

与量子隐形传态一样,已经做了多次实验来验证量子策略优于经典策略。第一次这样的实验是在1981-82年由Aspect等人完成的[AGR81,AGR82,ADR82]。虽然这些结果非常支持量子力学,但仍然有“经典”的解释结果。2015年,代尔夫特大学的Hensen等人[HBD+15]以“无漏洞”的方式重新做了这个实验,从根本上消除了我们的宇宙不是量子力学的可能性。有关更详细的讨论,请参阅Aaronson关于该主题的文章[Aar15]。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值