2021-06-14

量子逻辑门

X门

让我们看一下我们的第一个量子逻辑门,即量子非门。毫无疑问,量子非门是经典非门的概括。在计算基础上,量子非门的作用与传统的非门类似,可以满足您的期望。也就是说,将∣0⟩状态变为∣1⟩,反之亦然:
NOT∣0⟩ = ∣1⟩
NOT∣1⟩ = ∣0⟩
但是,计算基础状态并不是量子位唯一可能的状态。当我们将NOT门应用于一般的叠加状态时,会发生什么情况,即α∣0⟩ + β∣1⟩?实际上,它几乎完成了最简单的事情:它线性地作用于量子态,互换了∣0⟩和∣1⟩的作用:
NOT(α∣0⟩ + β∣1⟩)= α∣1⟩ + β∣0⟩。
我一直在将NOT表示为量子NOT门。但是出于历史原因,从事量子计算的人们通常使用不同的符号X。因此,以上内容可能会被重写:
X(α∣0⟩ + β∣1⟩)= α∣1⟩ + β∣0⟩。
我将交替使用X门和NOT门这两个术语。
从历史上看,X符号的起源可追溯到1927年,当时物理学家Wolfgang Pauli提出了s_x运算(在当今的教科书中通常写为σ_x) 以帮助,描述某些对象,围绕x空间轴的旋转。此操作,后来引起从事量子计算工作的人们的兴趣。但是到那时,s(以及与旋转的关系)已经不相关了,所以s_x就正好成为X。
到目前为止,我们所看到的是,写下X门工作方式的代数方式。还有另一种表示形式,即量子电路表示形式。在量子电路中,我们将X门描述如下:

从左到右的线就是所谓的量子线。一个量子线代表一个量子比特。 “电线”一词及其绘制方式,看起来就像是量子位在太空中移动。但是,将左至右视为代表时间的流逝通常会很有帮助。因此,线的初始段只是时间的流逝,量子位没有任何反应。然后应用X门。然后量子线继续,留下所需的输出。 X门的第三个表示形式是值得一提的,表示形式为2 ×2矩阵:

H门

当然,X似乎并没有超越传统的NOT门所能做的所有事情。在本节中,我介绍一个明显涉及量子效应的门,即Hadamard门。
与X门一样,我们将首先说明Hadamard门如何在计算基础状态下起作用。用H表示门,这是它的作用:

当然,∣0⟩和∣1⟩不是唯一的量子态。Hadamard门如何作用于更一般的量子态? 知道它像量子NOT门一样,线性起作用,这不会让您感到惊讶。特别是,Hadamard门将α∣0⟩ + β∣1⟩叠加到相应的输出叠加上:
这是Hadamard门的电路表示。看起来就像电路图中的X门,只是我们将门标签更改为H:
就像X门一样,H具有矩阵表示形式:

I门

I是2×2的单位矩阵

Y门

Y门与X门相似,但是它具有 i i i − i -i i,而不是非对角线上的1,因此它需要 ∣0⟩到i∣1⟩和∣1⟩到−i∣0⟩:

Z门

Z门保持∣0⟩不变,并将∣1⟩变为−∣1⟩:

# CNOT门 这种门的一个示例是受控NOT(controlled-NOT或CNOT)门。在量子电路语言中,我们用两条线代表两个量子位,以下符号代表CNOT门:

上面带有填充小点的线(在本例中为顶部导线),称为控制量子位,其原因很快就会变得很清楚。带有较大的未填充圆的线,称为目标量子位。
到目前为止,我还没有说过两个量子位系统的可能状态,但是您可能会猜到。现在,我们有四个计算基础状态,对应于一个两位系统的四个可能状态:|00⟩,|01⟩,|10⟩和|11⟩。而且,对于一个二量子位系统,我们不仅可以拥有这四个状态,而且还可以具有它们的叠加(即线性组合):
α ∣ 00 ⟩ + β ∣ 01 ⟩ + γ ∣ 10 ⟩ + δ ∣ 11 ⟩ α∣00⟩+β∣01⟩+γ∣10⟩+δ∣11⟩ α00+β01+γ10+δ11
在这里,振幅α,β,γ,δ只是复数,并且绝对值的平方和为1,即 ∣ α ∣ 2 + ∣ β ∣ 2 + ∣ γ ∣ 2 + ∣ δ ∣ 2 = 1 ∣α∣^2 + ∣β∣^2 + ∣γ∣^2 + ∣δ∣^2=1 α2+β2+γ2+δ2=1。这与我们对单个量子位使用的归一化条件相同。
现在,CNOT门很像量子NOT门,直接受经典门启发。它的作用非常简单。如果控制量子位设置为1,如在状态∣10⟩和∣11⟩中,则它将翻转(即NOT)目标量子位。否则它什么都不做。根据所有四个计算状态写出动作,我们有:

如果您熟悉经典的编程语言,则可以将CNOT视为一种非常简单的if-then语句:如果(if)设置了控制量子位,则(then)不是目标量子位。但是,虽然简单,但它可以用作构建其他更复杂的条件行为的基础。
有一种方法,可以将以上所有四个方程式汇总为一个方程式。假设x和y是经典位,即0或1。那么我们可以将上述方程式重写为一个方程式: ∣ x , y ⟩ → ∣ x , y ⊕ x ⟩ ∣x,y⟩→∣x,y⊕x⟩ x,yx,yx
请注意插入逗号以使其更易于阅读–在处理多量子位状态时,这很常见。
上面的等式清楚地表明,CNOT会保留控制量子位x,但如果x设置为1,会翻转目标量子位y。请注意,⊕是加法模22,其中1⊕1= 0,正如我们从CNOT取∣11⟩到∣10⟩的事实所期望的那样。
CNOT就是这些。这真的是一个非常简单的想法和量子门。注意,正如我们对量子门所期望的那样,它当然在计算基态的叠加上,线性地起作用。所以:
α ∣ 00 ⟩ + β ∣ 01 ⟩ + γ ∣ 10 ⟩ + δ ∣ 11 ⟩ → α ∣ 00 ⟩ + β ∣ 01 ⟩ + γ ∣ 11 ⟩ + δ ∣ 10 ⟩ α∣00⟩+β∣01⟩+γ∣10⟩+δ∣11⟩→α∣00⟩+β∣01⟩+γ∣11⟩+δ∣10⟩ α00+β01+γ10+δ11α00+β01+γ11+δ10
而且,尽管我不会明确进行验证,但CNOT是单式的,因此保留了我们所期望的量子态的长度。
当然,CNOT不仅会出现在两个量子位的计算中。它也出现在涉及更多量子位的计算中。假设我们有3个量子位,例如计算基础状态,如∣000⟩,∣001⟩等。这是一个CNOT,其中第二个量子位为控制量子位,第三个量子位为目标:

怎么回事?好吧,我们可以写出,在任意计算基础上的状态∣x,y,z⟩,其中x,y和z都是经典位。当然,第一位x根本没有改变,因为它不包含在CNOT中。第二位y是控制位,因此不会更改。但是如果控制位y设置为1,则第三位z被翻转。因此,我们可以将CNOT的动作写为: ∣ x , y , z ⟩ → ∣ x , y , z ⊕ y ⟩ ∣x,y,z⟩→∣x,y,z⊕y⟩ x,y,zx,y,zy

T门

Toffoli门与CNOT门非常相似,但是它没有单个控制量子位,而是具有两个控制量子位x和y,以及单个目标量子位zz。如果两个控制量子位都被设置,则目标被翻转。否则,目标将不予处理:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值