卷积神经网络CNN基础《PyTorch深度学习实践》

全连接神经网络:网络是线性层串行连接,
因为线性层中任意输入与输出间,都有权重连接,
因此线性层也叫全连接层。

处理图像上常用的二维卷积神经网络
构建神经网络时:首先明确输入输出张量维度,利用各种层进行维度上尺寸大小的变换,最后把它映射到想要的输出空间。
卷积后,C变,W和H可变可不变,取决于是否padding。
下采样(或pooling池化)后,C不变,W和H变。
特征提取器:卷积,下采样
分类器:全连接…
全连接使图像失去空间信息,卷积层能保留空间信息
下图所示过程:输入—>卷积【(线性变换),激活函数(非线性变换)】,池化,重复这个过程若干次—>view打平,进入全连接层—>输出
在这里插入图片描述栅格图像:一个个像素点
矢量图像:由基本图像及其描述,现场描绘
对patch卷积,patch遍历整个图像
图像坐标原点在左上(如下图)
在这里插入图片描述
卷积
这几个红点处为中心(如下图)。所有使用3* 3卷积核少两行两列,原图5 * 5经过卷积少4行4列
如果要使输入输出图像w,h同:
卷积核是3* 3:padding=1 在图像外面填充一圈,
卷积核是5* 5:padding=2 在图像外面填充两圈
stride步长
例:stride = 2
55图像卷积->22图像
在这里插入图片描述
每个卷积核(kernel),卷积完通道为一
卷积计算:每次滑动的位置,对应位置相乘再求和,然后将3层操作求和+偏置b(如下图)
在这里插入图片描述
输入通道个数 = 卷积核通道个数
卷积核个数 = 输出通道个数(如下图)
在这里插入图片描述
卷积核是四维张量(mnw*h)下图
在这里插入图片描述

input = torch.randn(batch_size,in_channels,width,height) #rand normal 从正态分布采样随机数
#生成卷积层
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kenel_size=kernel_size)#输入通道,输出通道,卷积核大小
output = conv_layer(input)

由于pytorch输入数据必须是小批量,所以输入数据加一维度batch(小批量第几个)
在这里插入图片描述
上图:(n,c,w,h)
输入(batch_size=1,c=5,w=100,h=100)
输出(batch_size=1,c=10,w=98,h=98) # w=98,h=98 因为33的卷积层使得维度-2
卷积层(n=10,5,3,3) # kernel 3
3 ,n=输出通道数,c=输入通道数

定义卷积层注意四个值:输入通道,输出通道,卷积核w,h

下采样:用的比较多的是MaxPooling(最大池化层)
2* 2的maxpooling默认stride=2,就是把图像分成2* 2的一个组,在每个组里面找最大值
所以做maxpooling的时候只能把一个通道拿出来做maxpooling,通道之间不会去找最大值,所以在做最大池化(maxpooling)的时候,通道数量不会发生改变,但是如果用2*2的maxpooling,图像大小会缩成原来的一半(如下图)
在这里插入图片描述

CNN:(如下图) 权重是自己设置的
在这里插入图片描述
GPU版:(比CPU版就多了两处)

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
 
 
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
 
 
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x))) 
        #(batch_size,20,4,4)->(batch_size,320)
        x = x.view(batch_size, -1) # -1 此处自动算出的是320
        # print("x.shape",x.shape)
        x = self.fc(x) #全连接 (batch_size,320)->(batch_size,10)
 
        return x
 
 
model = Net()
#模型迁移到GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 设置GPU
model.to(device)
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 输入输出迁移都到GPU上
            images, labels = images.to(device), labels.to(device) 
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))
    return correct/total
 
 
if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
    
    plt.plot(epoch_list,acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
 
    
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值