文章链接:https://doi.org/10.48550/arXiv.2404.09555
代码链接:https://github.com/LSIbabnikz/AI-KD
文章题目
AI-KD: Towards Alignment Invariant Face Image Quality Assessment Using Knowledge Distillation
发表年限
2024
期刊/会议名称
IEEE International Workshop on Biometrics and Forensics (IWBF) 2024
论文简要
- 为了解决对齐技术发生变化导致的大多数现有FIQA技术的性能迅速变得不理想的问题,作者在本文中提出了一种新颖的知识蒸馏方法,称为AI-KD。AI-KD 依赖于知识蒸馏,该过程结合了简单的图像变换,模仿不同对齐方法生成的样本之间的轻微变化。它可以扩展到任何现有的FIQA技术,提升其对对齐变化的鲁棒性,从而在不同对齐程序下提升性能。
- 为了验证所提出的蒸馏方法,作者在6个面部数据集上与4个最新的面部识别模型进行了综合实验,并与7种最先进的FIQA技术进行了比较。结果表明,AI-KD不仅在错位样本上,而且在正确对齐的面部图像上,均能一致地提高初始FIQA技术的性能。此外,当与具有竞争力的初始FIQA方法结合使用时,它可以达到新的最先进水平。
动机
- 面部图像质量评估 (FIQA) 技术需要正确对齐的输入样本以达到最佳性能,从而限制了推理过程中使用的关键点检测算法的选择。
- 这种对齐敏感性来自于大多数FIQA技术是使用特定的面部对齐过程进行训练或设计的。如果对齐技术发生变化,大多数现有FIQA技术的性能会迅速变得不理想。
- 尽管大多数关键点检测器都能实现高精度,但它们的预测通常会有几个像素的差异,这足以对现有 FIQA 技术的性能产生不利影响。
主要思想或方法架构
- 在预处理步骤中,使用选定的地标检测器D从所有N个样本¨xi中提取面部关键点kptsi,使得kptsi = D(¨xi)。
- 提取的关键点kptsi包括左眼和右眼的坐标、鼻子尖端和嘴唇的角落,可以用于通过将这些坐标与预定义模板进行匹配,从而正确对齐¨xi,得到一个正确对齐的样本xi。
- 此外,还针对所有N个样本¨xi使用选定的FIQA技术计算伪质量标签qi,使得qi = Q(xi)。
-
训练过程包括两个主要步骤:
- 样本转换步骤
- 实际的知识蒸馏
-
样本转换步骤生成具有不同对齐方式的样本,而知识蒸馏步骤将伪质量标签中编码的知识传输到学生模型中。
-
在样本转换步骤中,初始的人脸样本¨xi被用来生成一个正确对齐的样本xi和一个不正确对齐的样本ˆxi。正确对齐的样本xi是通过根据kptsi进行对齐生成的,而ˆxi旨在复制由未知的人脸地标检测器产生的对齐。任何良好运行的人脸地标检测方法的预测地标将近似于基准地标kptsi。
-
基于这个假设,作者随机在kptsi的参考坐标周围抽样,生成新的地标ˆkptsi对应于未知方法Dˆ。形式上,这可以写为:
-
其中U[−p,p]是从区间[−p, p]中抽样的均匀随机变量。这意味着两个地标(初始和扰动后)之间的所有坐标最多相差p像素。
-
在知识蒸馏步骤中,教师模型Mt在整个训练过程中被冻结,而学生模型Ms ◦ MLP的参数则使用专门的蒸馏目标进行优化。正确对齐的样本xi通过冻结的教师模型Mt,产生输入样本的特征表示ei = Mt(xi)。计算得到的表示ei和相应的伪质量标签qi共同表示了学生模型(Ms ◦ MLP)的回归目标。
-
为了能够为蒸馏过程定义损失,不正确对齐的样本ˆxi通过Ms进行处理,产生不正确对齐样本的特征表示ˆei。计算得到的表示ˆei然后通过一个MLP进一步处理,生成预测的质量标签ˆqi。
在这里,表示损失旨在使ˆxi和xi的表示对齐:
-
质量损失旨在确保原始的和预测的质量分数尽可能接近,即:
实验结果
所提出的知识蒸馏方案不仅可以提高现有FIQA技术的性能,而且可以轻松地在所有测试场景中实现最先进的结果
结果表明,对齐不变的知识蒸馏不仅可以提高在使用对齐不良样本时的性能,而且还有助于对齐良好的样本的FIQA技术的性能。