二手车价格预测--task2 数据分析

数据挖掘学习任务二是对数据进行EDA–数据性探索分析。
EDA定义

  • 探索性数据分析(Exploratory Data Analysis,简称EDA),是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。

EDA目标

  • EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。
  • 当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。
  • 引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。
  • 完成对于数据的探索性分析,并对于数据进行一些图表或者文字总结并打卡。

EDA一般步骤:

  1. 加载数据(必要时可以对列名重命名)

  2. 查看数据整体概况

  3. 检测缺失值、异常值、重复值问题

  4. 了解预测值的分布概况
    4.1 总体概况(无界约翰逊分布等)
    4.2 查看skewness 和 kurtosis
    4.3 查看预测值的具体频数

  5. 特征分析
    5.1 特征分类
    5.2 按照不同类别的方法进行分析
    (1)单变量分析(与预测值的相关性等)
    (2)多变量分析(变量间的关系等)

  6. 总结分析(数据报告)

代码

1. 函数库和数据载入

import numpy as np
import pandas as pd
import warnings
import os,sys

project_path = os.path.dirname(os.path.abspath("__file__")) 
# 设置动态路径
# 获取当前文件路径的上一级目录
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None) # 设置DataFrame的输出显示,显示所有列
# 载入数据集
train_data = pd.read_csv(project_path + r'\used_car_train_20200313.csv', sep=' ')
test_data = pd.read_csv(project_path + r'\used_car_testA_20200313.csv', sep=' ')

print('train_data_shape:', train_data.shape)
print('test_data_shape:', test_data.shape)

train_data_shape: (150000, 31)
test_data_shape: (50000, 30)

train_data.head()

在这里插入图片描述

2. 总览数据

  1. describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以
    及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断,比如有的时候会发现
    999 9999 -1 等值这些其实都是nan的另外一种表达方式,有的时候需要注意下
  2. info 通过info来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常
train_data.describe()
Test_data.describe()
// 通过info()来熟悉数据类型
Train_data.info()
Test_data.info()

bodyType、fuelType、gearbox有缺失值

在这里插入图片描述

3.判断数据异常

Train_data.isnull().sum()
Test_data.isnull().sum()
# nan可视化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()

在这里插入图片描述

# 可视化看下缺省值
msno.matrix(Train_data.sample(250))
msno.bar(Train_data.sample(1000))
# 可视化看下缺省值
msno.matrix(Test_data.sample(250))
msno.bar(Test_data.sample(1000))

可视化有四列有缺省,notRepairedDamage缺省得最多

在这里插入图片描述

## 2) 查看异常值检测
Train_data['notRepairedDamage'].value_counts()
# 来‘ - ’也为空缺值,因为很多模型对nan有直接的处理,这里我们先不做处理,先替换成nan
Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
Train_data['notRepairedDamage'].value_counts()
Train_data.isnull().sum()
Test_data['notRepairedDamage'].value_counts()
Test_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
#去掉倾斜严重的特征
#查看以下两个特征(按照教程做的,事先肯定不知道哪个特征严重倾斜)

print(Train_data["seller"].value_counts())
print(Train_data["offerType"].value_counts())

输出:

0 149999
1 1
Name: seller, dtype: int64
0 150000
Name: offerType, dtype: int64

分析数据分布

查看要预测数据(price)的分布信息:

import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
plt.show()

查看偏度和峰度
偏度: 表示数据总体取值分布的对称性。

峰度: 表示数据分布顶的尖锐程度。

sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
plt.show()

在这里插入图片描述

查看帧数,更具体地查看数据分布

plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()
# log 变换后的分布
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

在这里插入图片描述

log变换后的分布
在这里插入图片描述

特征分类

# 数字特征
numeric_features = Train_data.select_dtypes(include=[np.number])
print(numeric_features.columns)
# 类别特征
categorical_features = Train_data.select_dtypes(include=[np.object])
print(categorical_features.columns)

Index([‘SaleID’, ‘name’, ‘regDate’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’,
‘gearbox’, ‘power’, ‘kilometer’, ‘regionCode’, ‘creatDate’, ‘price’,
‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’,
‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’, ‘v_14’],
dtype=‘object’)
Index([‘notRepairedDamage’], dtype=‘object’)

查看每个分类特征的分布:

# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())

数字特征分析

1.使用corr分析
corr() 函数返回的是各个特征之间的相关系数,是 DataFrame 类型。

# 数字特征
numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]
numeric_features.append('price')
## 1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')
# 热力图的形式画出各个数字特征之间的相关系数:
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation, square=True, vmax=0.8)
plt.show()

在这里插入图片描述

  1. 查看各个特征的偏度和峰度
## 2) 查看几个特征的 偏度和峰值
for col in numeric_features:
    print('{:15}'.format(col), 
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) , '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  
         )
  1. 分布可视化

3) 每个数字特征的分布可视化

f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
plt.show()

melt() 函数是一个逆转操作,其中的 value_vars 参数表示需要转换的列名。
在这里插入图片描述

数字特征相互之间的关系可视化

## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()

在这里插入图片描述

多变量互相回归关系可视化

fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)

v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)

v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)

power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)

v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)

v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)

v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)

v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)

v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)

v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

在这里插入图片描述

用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")

总结

  1. 对于数据的初步分析(直接查看数据,或.sum(), .mean(),.descirbe()等统计函数)可以从:样本数量,训练集数量,是否有时间特征,是否是时许问题,特征所表示的含义(非匿名特征),特征类型(字符类似,int,float,time),特征的缺失情况(注意缺失的在数据中的表现形式,有些是空的有些是”NAN”符号等),特征的均值方差情况。

  2. 分析记录某些特征值缺失占比30%以上样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型去预测。

  3. 对于异常值做专门的分析,分析特征异常的label是否为异常值(或者偏离均值较远或者事特殊符号),异常值是否应该剔除,还是用正常值填充,是记录异常,还是机器本身异常等。

  4. 对于Label做专门的分析,分析标签的分布情况等。

  5. 进步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性。

参考内容:
Datawhale 零基础入门数据挖掘-Task2 数据分析
详解seaborn中的kdeplot、rugplot、distplot与jointplot
机器学习实战:基于Scikit-Learn和TensorFlow

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值