【沙龙花絮】对话台湾开发者:分享游戏引擎的多元化发展

昨晚19:30,Cocos2d-x分享沙龙台湾站在台北正式拉开帷幕。此次沙龙是“触控开发者平台”首次在台湾公开亮相,吸引了来自Gumi台湾、LINE PLUS、雷霆科技等数十家知名开发商以及台湾师范大学高校师生共计百余位听众参与,现场座无虚席,气氛十分热闹。

6debdaa0f0b27f7a1f49c81fdcef0c95.jpeg

触控科技开发者关系副总裁金晓颖作为首位登台的嘉宾,风趣而细致地分享了触控开发者平台战略核心业务及Cocos2d-x引擎全新版本功能。她提到:“触控致力于建议并打造生态系统的健康发展,帮助游戏开发者提升效率、降低成本,和开发者在移动互联网日趋白热化的今天一道实现共赢。”真挚的话语和幽默的解说赢得了台下的阵阵掌声。

b79fb69f8ab8df783dc0a4dc9ae46b95.jpeg

随后,Cocos2d-x技术总监吴昊针对Cocos2d-x的基本概念和适配编辑器与开发者进行了深度交流。吴昊透露,众所期待的Cocos2d-x 3.3版本将会在今年10月份与大家见面。在此次的V3.3版本中,Cocos2d-x的3D技术不仅会在多角度层面进行优化和突破,而且会在创新3D功能的基础上,全面提升2D的声效引擎、新粒子效果,让Cocos2d-x更好地为引擎新老开发者服务。

除此之外,吴昊还分享了海外开发者对于Cocos2d-x的适配贡献,包括乌克兰开发者研发的Flash to Cocos2d-x 、日本开发者研发的Video Sprite 和 Live 2D等,让台下听众赞叹不已。

b722163dc945309407f271b2a199a675.jpeg

紧接着,Arm生态系统市场经理庄智鑫展示了基于ARM架构设备上进行Cocos2d-x游戏的效能优化,他表示:“国内七成最卖座的游戏采用Cocos2d-x游戏引擎技术,国外知名开发商Wooga、Zynga、Gamevil等也在采用Cocos2d-x,总下载量已超过150万次。触控科技与ARM的合作体现了触控科技整合最先进的后端技术,并支持开发者创造最快、最彻底的移动游戏体验的决心。”

d00394565fafbdbc66c3659053aee246.jpeg

《万千回忆》开发商Akatsuki的共同创办人/COO香田哲朗带来了题为《Akatsuki,the new challenger》的分享,讲述了风靡日本的大热游戏《万千回忆》背后的点点滴滴,用一线案例告诉大家超人气游戏诞生的整个过程,让人受益匪浅。

ff95a744f9829678abeabc36df892d3a.jpeg

沙龙的最后,触控教育高级商务经理郑淼和开发者畅谈台湾高校合作的体会心得,并现场展示了大陆合作高校的傲人成果。郑淼表示,触控将再接再厉,在台湾继续深入拓展高校教育工程。同时她也详细解读了触控认证讲师体制,并热情地欢迎开发者加入触控认证讲师的队伍,让自己在成长的同时帮助更多的新人共同进步。

e12d37fbb9aeb51076358269c6bc6487.jpeg

沙龙除了精彩的分享以外,现场还准备了美味的茶歇饮品、丰厚的抽奖活动等,让现场气氛一次次达到高潮。

此次沙龙活动的圆满结束,不仅加深了两岸开发者的技术交流与分享,而且让Cocos2d-x团队深深感受到了来自台湾开发者的热情与支持。

未来,Cocos 2d-x引擎也将不断优化升级,利用衍生出的开发工具与开发者平台,全力帮助越来越多的海峡两岸乃至全球的开发者们降低开发门槛,共同构建健康发展的手游生态圈。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值