抽象代数-群论

本文深入探讨了群论的基本概念,包括群的定义、幺半群、交换群、对称群、子群、循环群以及群同态。讨论了群的性质,如可交换性和消去律,并介绍了拉格朗日定理。文章还涵盖了正规子群、商群以及群的同构定理,揭示了群论在数学和理论计算机科学中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

群论

群的定义

给定集合 G 和一个二元关系 ∗ , 这个二元关系是一个 G × G → G 的映射 满足以下三个性质 : ( 1 ) 结合律:对于任意给定的 a , b , c ∈ G , 有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) ( 2 ) 单位元存在 : 对所有的 a ∈ G 存在这样的元素 e ∈ G 满足 e a = a e = a ( 3 ) 逆元存在,对所有的 a ∈ G 存在这样的元素 a − 1 ∈ G 满足 a a − 1 = a − 1 a = e 给定集合G和一个二元关系*,这个二元关系是一个G\times G\rightarrow G的映射 \\满足以下三个性质: \\(1)结合律:对于任意给定的a,b,c\in G,有(a*b)*c = a * (b*c) \\(2)单位元存在:对所有的a\in G\\存在这样的元素e\in G满足ea = ae =a \\(3)逆元存在,对所有的a\in G\\存在这样的元素a^{-1}\in G满足aa^{-1}=a^{-1}a =e 给定集合G和一个二元关系,这个二元关系是一个G×GG的映射满足以下三个性质:(1)结合律:对于任意给定的a,b,cG,(ab)c=a(bc)(2)单位元存在:对所有的aG存在这样的元素eG满足ea=ae=a(3)逆元存在,对所有的aG存在这样的元素a1G满足aa1=a1a=e

例子:
< Z , + > 是一个群, < Z , − > 不是 <Z,+>是一个群,<Z,->不是 <Z,+>是一个群,<Z,>不是

对于 < R   ╲ { 0 } , ∗ > , 其中 a ∗ b = a b ( a , b ∈ R ╲ { 0 } ) 分析: ( 1 ) 结合律 ( a ∗ b ) ∗ c = a b ∗ c = a b c a ∗ ( b ∗ c ) = a ∗ b c = a b c = a c b 不满足结合律,所以不是群 对于<R\ \diagdown\{0\},*>,其中a*b=\frac{a}{b}(a,b\in R\diagdown\{0\}) \\分析:(1)结合律(a*b)*c=\frac{a}{b}*c=\frac{a}{bc} \\a*(b*c) = a * \frac{b}{c} =\frac{a}{\frac{b}{c}}=\frac{ac}{b} \\不满足结合律,所以不是群 对于<R { 0},>,其中ab=ba(a,bR{ 0})分析:(1)结合律(ab)c=bac=bcaa(bc)=acb=cba=bac不满足结合律,所以不是群

幺半群

( S , ∗ ) 是一个幺半群,当该二元运算满足结合律,且具有单位元 ∀ x , y , z ∈ S , x ∗ ( y ∗ z ) = ( x ∗ y ) ∗ z ∃ e ∈ S , ∀ x ∈ s , e ∗ x = x ∗ e = x (S,*)是一个幺半群,当该二元运算满足结合律,且具有单位元 \\\forall x,y,z \in S,x*(y*z) = (x*y)*z \\\exist e\in S,\forall x\in s,e*x =x*e=x (S,)是一个幺半群,当该二元运算满足结合律,且具有单位元x,y,zS,x(yz)=(xy)zeS,xs,ex=xe=x

交换幺半群

( S , ∗ ) 是交换幺半群,当其是一个幺半群,且满足交换律,即 ∀ x , y ∈ S , x ∗ y = y ∗ x (S,*)是交换幺半群,当其是一个幺半群,且满足交换律,即 \\\forall x,y\in S,x*y=y*x (S,)是交换幺半群,当其是一个幺半群,且满足交换律,即x,yS,xy=yx

群的性质

( 1 ) 任意群的单位元唯一 ( 2 ) 任意群的逆元唯一 ( 3 ) 设 G 为一个群,对于任意给定的元素 a , b ∈ G , 有 ( a b ) − 1 = b − 1 a − 1 (1)任意群的单位元唯一 \\(2)任意群的逆元唯一 \\(3)设G为一个群,对于任意给定的元素a,b\in G,有(ab)^{-1}=b^{-1}a^{-1} (1)任意群的单位元唯一(2)任意群的逆元唯一(3)G为一个群,对于任意给定的元素a,bG,(ab)1=b1a1

证明很简单,只需要设两个然后证明它们俩相等
证明: ( 1 ) 假设 e 1 , e 2 是群的两个不同的单位元,那么可以得到 e 1 ∗ e 2 = e 1 e 1 ∗ e 2 = e 2 结合两式可以得到 e 1 = e 2 与假设矛盾,所以任意群的单位元唯一 ( 2 ) 假设对元素 a 存在两个不同的逆元 a 1 − 1 , a 2 − 1 可以得到 a ∗ a 1 − 1 = e = a ∗ a 2 − 1 等式两边同乘以 a 1 − 1 得 a 1 − 1 = a 2 − 1 , 与假设矛盾,所以任意群元素的逆元唯一 ( 3 ) ( a b ) − 1 a b = e 两边右乘以 b − 1 a − 1 得到 ( a b ) − 1 = b − 1 a − 1 证明:(1)假设e_1,e_2是群的两个不同的单位元,那么可以得到\\e_1*e_2=e_1 \\e_1*e_2=e_2 \\结合两式可以得到e_1=e_2与假设矛盾,所以任意群的单位元唯一 \\(2)假设对元素a存在两个不同的逆元a^{-1}_1,a^{-1}_2 可以得到\\a*a^{-1}_1=e=a*a^{-1}_2等式两边同乘以a^{-1}_1得\\ a^{-1}_1 = a^{-1}_2,与假设矛盾,所以任意群元素的逆元唯一 \\(3)(ab)^{-1}ab = e两边右乘以b^{-1}a^{-1}得到 \\(ab)^{-1} = b^{-1}a^{-1} 证明:(1)假设e1,e2是群的两个不同的单位元,那么可以得到e1e2=e1e1e2=e2结合两式可以得到e1=e2与假设矛盾,所以任意群的单位元唯一(2)假设对元素a存在两个不同的逆元a11,a21可以得到aa11=e=aa21等式两边同乘以a11a11=a21,与假设矛盾,所以任意群元素的逆元唯一(3)(ab)1ab=e两边右乘以b1a1得到(ab)1=b1a1
注意:在这之后,我们针对加法群,二元关系自然符号规定为 + ,而针对乘法群,规定为 ∗ 或者省去。

另外加法群,单位元为0,乘法群,单位元为1 或者e 。另外,针对之后的抽象群,我们不加说明的条件下,均按乘法运算处理。

群的进一步性质

可交换性

给定群 G ,那么如果针对任意的两个元素 a , b ∈ G 有 a b = b a , 则它满足可交换性 给定群G,那么如果针对任意的两个元素a,b\in G\\有ab = ba,则它满足可交换性 给定群G,那么如果针对任意的两个元素a,bGab=ba,则它满足可交换性

例子:矩阵的乘法群不满足可交换性

消去律

给定群 G ,则对于任意的 a , b , c ∈ G ( 1 ) 若 a b = a c ,那么 b = c ( 2 ) 若 b a = c a , 那么 b = c 给定群G,则对于任意的a,b,c\in G \\(1)若ab = ac,那么b =c \\(2)若ba = ca, 那么b =c 给定群G,则对于任意的a,b,cG(1)ab=ac,那么b=c(2)ba=ca,那么b=c

证明:分别左乘和右乘a的逆元得到

对称群

定义 T = { 1 , 2 , . . . n } 那么满足双射的一个映射 T → T 称为一个 T 的置换 定义T=\{1,2,...n\}\\那么满足双射的一个映射T→T称为一个T的置换 定义T={ 1,2,...n}那么满足双射的一个映射TT称为一个T的置换

例子:
集合 T = { 1 , 2 } ,设 f ( 2 ) = 1 , f ( 1 ) = 2 显然它的象集也是 T ,并且是一个双射 集合T=\{1,2\},设f(2) = 1,f(1) =2\\显然它的象集也是T,并且是一个双射 集合T={ 1,2},设f(2)=1,f(1)=2显然它的象集也是T,并且是一个双射
另外,对于一个n元的置换,我们很容易由排列组合的思想得出来它有 n! 种情况。

于是,按照抽代原本的一种组合在一起的的思想,我们把所有的这些置换群组合起来,就得到了下面的定义:
定义 S n 为 n 元情况下的所有的置换,那么它是一个群,我们称为对称群 定义S_n为n元情况下的所有的置换,那么它是一个群,我们称为对称群 定义Snn元情况下的所有的置换,那么它是一个群,我们称为对称群
注意:在这个例子中,群的元素都是映射,映射的乘法我们定义为复合(composition),和函数复合的道理和运算法则是相同的。
S 3 是最小的非交换的对称群 S_3是最小的非交换的对称群 S3是最小的非交换的对称群
例子:
S 3 = { 1 , x , y , x 2 , x y , x 2 y   ∣   x 3 = 1 , y 2 = 1 , y x = x 2 y } S_3 = \{1,x,y,x^2,xy,x^2y \ | \ x^3=1,y^2=1,yx=x^2y\} S3={ 1,x,y,x2,xy,x2y  x3=1,y2=1,yx=x2y}
这种表示方法的优点是写起来简单,所以运算方便。

通过这个集合的约束条件我们也容易看出 x,y 代表这个集合的什么元素。另一方面也说明了,通过取一个群的部分元素进行不断的运算,是可以表示出这个完整的群的。这个思想也在之后的陪集相关概念中得到了验证。

另外一种不常见但是好理解的写法,我们用例子的方式说明。
比如 ( 1 , 2 ) 代表从第 1 个元素映射到第 2 个,第 2 个元素映射到第 1 个 比如 ( 1 , 2 , 3 ) 从第 1 个元素映射到第 2 个,第 2 个元素映射到第 3 个 , 第 3 个元素映射到第 1 个 比如(1,2)代表从第1个元素映射到第2个,第2个元素映射到第1个 \\比如(1,2,3)从第1个元素映射到第2个,第2个元素映射到第3个,第3个元素映射到第1个 比如(1,2)代表从第1个元素映射到第2个,第2个元素映射到第1比如(1,2,3)从第1个元素映射到第2个,第2个元素映射到第3,3个元素映射到第1

复合运算 ( 1 , 2 ) ( 1 , 2 , 3 ) = ( 2 , 3 ) 证明: ( 1 , 2 ) ( 1 , 2 , 3 ) = { ( 1 , 2 ) → ( 1 , 2 , 3 ) , ( 1 , 2 , 3 ) → ( 1 , 2 ) } = { { 1 → 2 , 2 → 1 } → { 1 → 2 , 2 → 3 , 3 → 1 } , { 1 → 2 , 2 → 3 , 3 → 1 } → { 1 → 2 , 2 → 1 } } ∵ 2 → 3 → 1 → 2 ∴ ( 1 , 2 ) ( 1 , 2 , 3 ) = ( 2 , 3 ) 复合运算(1,2)(1,2,3) = (2,3) \\证明:(1,2)(1,2,3)=\{(1,2)→(1,2,3),(1,2,3)→(1,2)\}=\\\{\{1→2,2→1\}→\{1→2,2→3,3→1\},\{1→2,2→3,3→1\}→\{1→2,2→1\}\} \\∵2→3→1→2 \\∴(1,2)(1,2,3)=(2,3)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值