抽象代数-群论
群论
群的定义
给定集合 G 和一个二元关系 ∗ , 这个二元关系是一个 G × G → G 的映射 满足以下三个性质 : ( 1 ) 结合律:对于任意给定的 a , b , c ∈ G , 有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) ( 2 ) 单位元存在 : 对所有的 a ∈ G 存在这样的元素 e ∈ G 满足 e a = a e = a ( 3 ) 逆元存在,对所有的 a ∈ G 存在这样的元素 a − 1 ∈ G 满足 a a − 1 = a − 1 a = e 给定集合G和一个二元关系*,这个二元关系是一个G\times G\rightarrow G的映射 \\满足以下三个性质: \\(1)结合律:对于任意给定的a,b,c\in G,有(a*b)*c = a * (b*c) \\(2)单位元存在:对所有的a\in G\\存在这样的元素e\in G满足ea = ae =a \\(3)逆元存在,对所有的a\in G\\存在这样的元素a^{-1}\in G满足aa^{-1}=a^{-1}a =e 给定集合G和一个二元关系∗,这个二元关系是一个G×G→G的映射满足以下三个性质:(1)结合律:对于任意给定的a,b,c∈G,有(a∗b)∗c=a∗(b∗c)(2)单位元存在:对所有的a∈G存在这样的元素e∈G满足ea=ae=a(3)逆元存在,对所有的a∈G存在这样的元素a−1∈G满足aa−1=a−1a=e
例子:
< Z , + > 是一个群, < Z , − > 不是 <Z,+>是一个群,<Z,->不是 <Z,+>是一个群,<Z,−>不是
对于 < R ╲ { 0 } , ∗ > , 其中 a ∗ b = a b ( a , b ∈ R ╲ { 0 } ) 分析: ( 1 ) 结合律 ( a ∗ b ) ∗ c = a b ∗ c = a b c a ∗ ( b ∗ c ) = a ∗ b c = a b c = a c b 不满足结合律,所以不是群 对于<R\ \diagdown\{0\},*>,其中a*b=\frac{a}{b}(a,b\in R\diagdown\{0\}) \\分析:(1)结合律(a*b)*c=\frac{a}{b}*c=\frac{a}{bc} \\a*(b*c) = a * \frac{b}{c} =\frac{a}{\frac{b}{c}}=\frac{ac}{b} \\不满足结合律,所以不是群 对于<R ╲{ 0},∗>,其中a∗b=ba(a,b∈R╲{ 0})分析:(1)结合律(a∗b)∗c=ba∗c=bcaa∗(b∗c)=a∗cb=cba=bac不满足结合律,所以不是群
幺半群
( S , ∗ ) 是一个幺半群,当该二元运算满足结合律,且具有单位元 ∀ x , y , z ∈ S , x ∗ ( y ∗ z ) = ( x ∗ y ) ∗ z ∃ e ∈ S , ∀ x ∈ s , e ∗ x = x ∗ e = x (S,*)是一个幺半群,当该二元运算满足结合律,且具有单位元 \\\forall x,y,z \in S,x*(y*z) = (x*y)*z \\\exist e\in S,\forall x\in s,e*x =x*e=x (S,∗)是一个幺半群,当该二元运算满足结合律,且具有单位元∀x,y,z∈S,x∗(y∗z)=(x∗y)∗z∃e∈S,∀x∈s,e∗x=x∗e=x
交换幺半群
( S , ∗ ) 是交换幺半群,当其是一个幺半群,且满足交换律,即 ∀ x , y ∈ S , x ∗ y = y ∗ x (S,*)是交换幺半群,当其是一个幺半群,且满足交换律,即 \\\forall x,y\in S,x*y=y*x (S,∗)是交换幺半群,当其是一个幺半群,且满足交换律,即∀x,y∈S,x∗y=y∗x
群的性质
( 1 ) 任意群的单位元唯一 ( 2 ) 任意群的逆元唯一 ( 3 ) 设 G 为一个群,对于任意给定的元素 a , b ∈ G , 有 ( a b ) − 1 = b − 1 a − 1 (1)任意群的单位元唯一 \\(2)任意群的逆元唯一 \\(3)设G为一个群,对于任意给定的元素a,b\in G,有(ab)^{-1}=b^{-1}a^{-1} (1)任意群的单位元唯一(2)任意群的逆元唯一(3)设G为一个群,对于任意给定的元素a,b∈G,有(ab)−1=b−1a−1
证明很简单,只需要设两个然后证明它们俩相等
证明: ( 1 ) 假设 e 1 , e 2 是群的两个不同的单位元,那么可以得到 e 1 ∗ e 2 = e 1 e 1 ∗ e 2 = e 2 结合两式可以得到 e 1 = e 2 与假设矛盾,所以任意群的单位元唯一 ( 2 ) 假设对元素 a 存在两个不同的逆元 a 1 − 1 , a 2 − 1 可以得到 a ∗ a 1 − 1 = e = a ∗ a 2 − 1 等式两边同乘以 a 1 − 1 得 a 1 − 1 = a 2 − 1 , 与假设矛盾,所以任意群元素的逆元唯一 ( 3 ) ( a b ) − 1 a b = e 两边右乘以 b − 1 a − 1 得到 ( a b ) − 1 = b − 1 a − 1 证明:(1)假设e_1,e_2是群的两个不同的单位元,那么可以得到\\e_1*e_2=e_1 \\e_1*e_2=e_2 \\结合两式可以得到e_1=e_2与假设矛盾,所以任意群的单位元唯一 \\(2)假设对元素a存在两个不同的逆元a^{-1}_1,a^{-1}_2 可以得到\\a*a^{-1}_1=e=a*a^{-1}_2等式两边同乘以a^{-1}_1得\\ a^{-1}_1 = a^{-1}_2,与假设矛盾,所以任意群元素的逆元唯一 \\(3)(ab)^{-1}ab = e两边右乘以b^{-1}a^{-1}得到 \\(ab)^{-1} = b^{-1}a^{-1} 证明:(1)假设e1,e2是群的两个不同的单位元,那么可以得到e1∗e2=e1e1∗e2=e2结合两式可以得到e1=e2与假设矛盾,所以任意群的单位元唯一(2)假设对元素a存在两个不同的逆元a1−1,a2−1可以得到a∗a1−1=e=a∗a2−1等式两边同乘以a1−1得a1−1=a2−1,与假设矛盾,所以任意群元素的逆元唯一(3)(ab)−1ab=e两边右乘以b−1a−1得到(ab)−1=b−1a−1
注意:在这之后,我们针对加法群,二元关系自然符号规定为 + ,而针对乘法群,规定为 ∗ 或者省去。
另外加法群,单位元为0,乘法群,单位元为1 或者e 。另外,针对之后的抽象群,我们不加说明的条件下,均按乘法运算处理。
群的进一步性质
可交换性
给定群 G ,那么如果针对任意的两个元素 a , b ∈ G 有 a b = b a , 则它满足可交换性 给定群G,那么如果针对任意的两个元素a,b\in G\\有ab = ba,则它满足可交换性 给定群G,那么如果针对任意的两个元素a,b∈G有ab=ba,则它满足可交换性
例子:矩阵的乘法群不满足可交换性
消去律
给定群 G ,则对于任意的 a , b , c ∈ G ( 1 ) 若 a b = a c ,那么 b = c ( 2 ) 若 b a = c a , 那么 b = c 给定群G,则对于任意的a,b,c\in G \\(1)若ab = ac,那么b =c \\(2)若ba = ca, 那么b =c 给定群G,则对于任意的a,b,c∈G(1)若ab=ac,那么b=c(2)若ba=ca,那么b=c
证明:分别左乘和右乘a的逆元得到
对称群
定义 T = { 1 , 2 , . . . n } 那么满足双射的一个映射 T → T 称为一个 T 的置换 定义T=\{1,2,...n\}\\那么满足双射的一个映射T→T称为一个T的置换 定义T={ 1,2,...n}那么满足双射的一个映射T→T称为一个T的置换
例子:
集合 T = { 1 , 2 } ,设 f ( 2 ) = 1 , f ( 1 ) = 2 显然它的象集也是 T ,并且是一个双射 集合T=\{1,2\},设f(2) = 1,f(1) =2\\显然它的象集也是T,并且是一个双射 集合T={
1,2},设f(2)=1,f(1)=2显然它的象集也是T,并且是一个双射
另外,对于一个n元的置换,我们很容易由排列组合的思想得出来它有 n! 种情况。
于是,按照抽代原本的一种组合在一起的的思想,我们把所有的这些置换群组合起来,就得到了下面的定义:
定义 S n 为 n 元情况下的所有的置换,那么它是一个群,我们称为对称群 定义S_n为n元情况下的所有的置换,那么它是一个群,我们称为对称群 定义Sn为n元情况下的所有的置换,那么它是一个群,我们称为对称群
注意:在这个例子中,群的元素都是映射,映射的乘法我们定义为复合(composition),和函数复合的道理和运算法则是相同的。
S 3 是最小的非交换的对称群 S_3是最小的非交换的对称群 S3是最小的非交换的对称群
例子:
S 3 = { 1 , x , y , x 2 , x y , x 2 y ∣ x 3 = 1 , y 2 = 1 , y x = x 2 y } S_3 = \{1,x,y,x^2,xy,x^2y \ | \ x^3=1,y^2=1,yx=x^2y\} S3={
1,x,y,x2,xy,x2y ∣ x3=1,y2=1,yx=x2y}
这种表示方法的优点是写起来简单,所以运算方便。
通过这个集合的约束条件我们也容易看出 x,y 代表这个集合的什么元素。另一方面也说明了,通过取一个群的部分元素进行不断的运算,是可以表示出这个完整的群的。这个思想也在之后的陪集相关概念中得到了验证。
另外一种不常见但是好理解的写法,我们用例子的方式说明。
比如 ( 1 , 2 ) 代表从第 1 个元素映射到第 2 个,第 2 个元素映射到第 1 个 比如 ( 1 , 2 , 3 ) 从第 1 个元素映射到第 2 个,第 2 个元素映射到第 3 个 , 第 3 个元素映射到第 1 个 比如(1,2)代表从第1个元素映射到第2个,第2个元素映射到第1个 \\比如(1,2,3)从第1个元素映射到第2个,第2个元素映射到第3个,第3个元素映射到第1个 比如(1,2)代表从第1个元素映射到第2个,第2个元素映射到第1个比如(1,2,3)从第1个元素映射到第2个,第2个元素映射到第3个,第3个元素映射到第1个
复合运算 ( 1 , 2 ) ( 1 , 2 , 3 ) = ( 2 , 3 ) 证明: ( 1 , 2 ) ( 1 , 2 , 3 ) = { ( 1 , 2 ) → ( 1 , 2 , 3 ) , ( 1 , 2 , 3 ) → ( 1 , 2 ) } = { { 1 → 2 , 2 → 1 } → { 1 → 2 , 2 → 3 , 3 → 1 } , { 1 → 2 , 2 → 3 , 3 → 1 } → { 1 → 2 , 2 → 1 } } ∵ 2 → 3 → 1 → 2 ∴ ( 1 , 2 ) ( 1 , 2 , 3 ) = ( 2 , 3 ) 复合运算(1,2)(1,2,3) = (2,3) \\证明:(1,2)(1,2,3)=\{(1,2)→(1,2,3),(1,2,3)→(1,2)\}=\\\{\{1→2,2→1\}→\{1→2,2→3,3→1\},\{1→2,2→3,3→1\}→\{1→2,2→1\}\} \\∵2→3→1→2 \\∴(1,2)(1,2,3)=(2,3)