机器学习概论(第一讲)
定义:
- 对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适,优质,大量的经验E,该程序对于任务T的性能逐步提高。 推荐经典书籍:Tom MichaelnMitchell 1997 机器学习
李航 统计学习方法 - 直白翻译:用计算机做个“系统”,根据“学习资料”(训练数据)进行学习,随着日复一日的学习(训练次数的不断提升),这个“系统”水平不断提高(系统性能提升),通过参数优化的学习模型,能够用来预测相关问题的输出。
简单分类:有监督,无监督,强化学习(带反馈,并自动调整)
一些有趣案例:LDA(线性判别分析)主题模型
上述思考题答案如下:θ方向导数
机器学习的定义(割线位于函数值上分)与高数定义有些不同: