机器学习概论--自总结版

机器学习概论(第一讲)

定义:

  • 对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适,优质,大量的经验E,该程序对于任务T的性能逐步提高。 推荐经典书籍:Tom MichaelnMitchell 1997 机器学习
    李航 统计学习方法
  • 直白翻译:用计算机做个“系统”,根据“学习资料”(训练数据)进行学习,随着日复一日的学习(训练次数的不断提升),这个“系统”水平不断提高(系统性能提升),通过参数优化的学习模型,能够用来预测相关问题的输出。
    简单分类:有监督,无监督,强化学习(带反馈,并自动调整)
一些有趣案例:LDA(线性判别分析)主题模型

在这里插入图片描述

在这里插入图片描述
上述思考题答案如下:θ方向导数

在这里插入图片描述

在这里插入图片描述

机器学习的定义(割线位于函数值上分)与高数定义有些不同:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值