Datawhale组队学习21期_异常检测_Task1:异常检测介绍

1.什么是异常检测?

异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行为差异大的数据。

在这里插入图片描述

异常的类别

点异常:指的是少数个体实例是异常的,大多数个体实例是正常的,例如正常人与病人的健康指标;

上下文异常:又称上下文异常,指的是在特定情境下个体实例是异常的,在其他情境下都是正常的,例如在特定时间下的温度突然上升或下降,在特定场景中的快速信用卡交易;

群体异常:指的是在群体集合中的个体实例出现异常的情况,而该个体实例自身可能不是异常,例如社交网络中虚假账号形成的集合作为群体异常子集,但子集中的个体节点可能与真实账号一样正常。

异常检测任务分类

有监督:训练集的正例和反例均有标签

无监督:训练集无标签

半监督:在训练集中只有单一类别(正常实例)的实例,没有异常实例参与训练

在这里插入图片描述

2.异常检测的具体应用

在这里插入图片描述

识别如信用卡欺诈,工业生产异常,网络流里的异常(网络侵入)等问题,针对的是少数的事件。
在这里插入图片描述

3.异常检测的工具概览

在这里插入图片描述

在这里插入图片描述

4.异常检测算法与主流模型介绍

传统方法

基于统计学的方法

线性模型

基于相似度的方法

集成方法

孤立森林

机器学习

在这里插入图片描述

模型详细讲解 https://www.bilibili.com/video/BV1tV411b7Ck

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

5.如何选择模型和调参?

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

检测相关的资源汇总(书籍,讲座,代码,数据等)

链接https://github.com/yzhao062/anomaly-detection-resources

练习:学习pyod库基本操作

(如何生成toy example,了解训练以及预测的api)

https://pyod.readthedocs.io/en/latest/ (Pyod库官网)

Datawhale

Datawhale是一个专注于数据科学与AI领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。Datawhale以“for the learner,和学习者一起成长”为愿景,鼓励真实地展现自我、开放包容、互信互助、敢于试错和勇于担当。同时Datawhale 用开源的理念去探索开源内容、开源学习和开源方案,赋能人才培养,助力人才成长,建立起人与人,人与知识,人与企业和人与未来的联结。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值