目标检测器(Object detector):
Input:image,patches,image pyramid,...
Backbone:VGG16,ResNet-50,ResNeXt-101,Darknet53...
Neek:FPN,PANet,Bi-FPN,...
Head:
Dense Prediction:RPN,YOLO,SSD,RentinaNet,FCOS,...
Sparse Prediction:Faster R-CNN,R-FCN,...
(可以自由组合成一个网络)

YOLOv4:

Backbone:CSPDarknet53
Neck:SPP,PAN
Head:YOLOv3
YOLOv4前生:
YOLOv1:直接回归出位置
YOLLOv2:全流程多尺度方法

本文介绍了YOLOv4目标检测器的原理和进化历程,包括其前代YOLOv1、v2、v3的特点。详细讲解了YOLOv4的CSPDarknet53骨干网、SPP和PAN Neck结构,以及如何通过多尺度检测提高性能。此外,还阐述了目标检测模型的训练过程、样本组织、损失函数、NMS非极大值抑制等关键概念,探讨了如何解决小目标检测的问题。
最低0.47元/天 解锁文章
717

被折叠的 条评论
为什么被折叠?



