阿里天池NLP新闻分类赛题_基于深度学习算法BERT_初学NLP(一)赛题理解以及数据集下载

赛题理解

  • 赛题名称:零基础入门NLP之新闻文本分类
  • 赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
  • 赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。

赛题数据

赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。

赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。

处理后的赛题训练数据如下:

在数据集中标签的对应的关系如下:{'科技': 0, '股票': 1, '体育': 2, '娱乐': 3, '时政': 4, '社会': 5, '教育': 6, '财经': 7, '家居': 8, '游戏': 9, '房产': 10, '时尚': 11, '彩票': 12, '星座': 13}

评测指标

评价指标选取为f1_score,改指标的具体公式为:

F_{1} = 2\cdot {\frac{precision\cdot recall}{precision+recall}}

后续需要增加侧重点时,我们可以选取评价指标为fbeta_score,具体公式为:

F _{\beta} = (1+\beta^{2})\cdot \frac{precision\cdot recall}{(\beta ^{2}\cdot precision)+recall }

具体\beta可以取为2或者0.5,若取2时召回率的权重高于精确率,若取0.5时,精确率的权重高于召回率。

解题思路

赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。

数据匿名化(data anonymization)是通过消除或加密将个人与存储数据联系起来的标识符,以保护私人或敏感信息的过程。匿名化后的数据应该不能从中识别出自然人或车牌等信息。我觉得可以理解为本次数据匿名化,它是对所有的文字进行特殊的编码,没有按常用的方式进行编码。

因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:

  • 思路1:TF-IDF + 机器学习分类器

直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。

  • 思路2:FastText

FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。

  • 思路3:WordVec + 深度学习分类器

WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。

  • 思路4:Bert词向量

Bert是高配款的词向量,具有强大的建模学习能力。

这次使用的就是Bert深度学习的方法。

数据下载

#数据下载
! mkdir ./data
#训练集
# train data
! wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip
! unzip train_set.csv.zip -d ./data
! rm train_set.csv.zip
#测试集
# test data
! wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip
! unzip test_a.csv.zip -d ./data
! rm test_a.csv.zip
#预训练下载
! wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/dragonball/NLP/emb.zip
! unzip emb.zip
! rm emb.zip
! mv ./emb/bert-mini/bert_config.json ./emb/bert-mini/config.json 
#新建保存目录
! mkdir ./save
#安装必要包
! pip install fasttext transformers==2.9.0 gensim torch==1.3.0#这个后面的要根据自己的torch版本来,不知道的可以print(torch.__version__)

叹号后面是终端操作请注意。

如果上述操作有问题可以采用下列数据集下载方式:

训练集数据:https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip

测试集A榜数据:https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip

测试集A榜数据提交样例:https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a_sample_submit.csv

天池智能制造质量预测数据集 背景描述 半导体产业是一个信息化程度高的产业。高度的信息化给数据分析创造了可能性。基于数据的分析可以帮助半导体产业更好的利用生产信息,提高产品质量。 现有的解决方案是,生产机器生产完成后,对产品质量做非全面的抽测,进行产品质量检核。这往往会出现以下状况,一是不能即时的知道质量的好坏,当发现质量不佳的产品时,要修正通常都为时以晚,二是在没有办法全面抽测的状况下,存在很大漏检的风险。 在机器学习,人工智能快速发展的今天,我们希望着由机器生产参数去预测产品的质量,来达到生产结果即时性以及全面性。更进一步的,可基于预先知道的结果,去做对应的决策及应变,对客户负责,也对制造生产更加敏感。 痛点与挑战: 1)TFT-LCD(薄膜晶体管液晶显示器)的生产过程较为复杂,包含几百道以上的工序。每道工序都有可能会对产品的品质产生影响,故算法模型需要考虑的过程变量较多。 2)另外,这些变量的取值可能会存在异常(如测点仪表的波动导致、设备工况漂移等现象),模型需要足够稳定性和鲁棒性。 3)产线每天加工的玻璃基板数以万计,模型需要在满足较高的精准度前提下尽可能实时得到预测结果,这样才能给在实际生产中进行使用。 价值: 1)如果能够建立算法模型准确预测出特性值,便可以实现生产过程的实时监控和预警,提前发现当前工序的问题、避免问题流入到后道工序,减少生产资源浪费的同时也优化了产品良率。 2)基于预测模型得到的关键参数,工艺人员能够快速地针对那些电性表现不佳的产品进行问题溯源分析,重点分析和调整那些关键的影响因子,加快不良问题的处理、提高整体工艺水平。 3)该预测模型在部署后也可以用于减少特性检测相关的工序,能够节约检测资源并且对提升产线整体的产能有正面作用。 数据说明 每条数据包含8029列字段。 第一个字段为ID号码,最后一列为要预测的值Y。其余的数据为用于预测Y的变量X。这些变量一共由多道工序组成,字段的名字可以区分不同的工序,例如 210X1, 210X2。300X1,300X2。字段中的TOOL_ID或者Tool为每道工序使用的机台,如果是string类型,需要选手自行进行数字化转换。注意: 数据中存在缺失值。 测试集分为A/B两份,相比训练集,最后一列的value值是缺失的,研究人员可以根据训练数据做模型训练,并对测试集做预测。为了方便研究人员评测算法效果,我们提供了测试集A的答案。 问题描述 本数据集提供了生产线上的抽样数据,反应机台的温度,气体,液体流量,功率,制成时间等因子。 通过这些因子,需要研究人员设计出模型,准确的预测与之相对应的特性数值。这是一个典型的回归预测问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值