题目描述
Farmmer John最近收割了几乎无限多块牧草,将它们堆放在空地上。这些牧草都是正方形的,而且都有非负整数长度的边长(当然有0)。一天它的奶牛Bessie发现了这些美味的牧草,于是希望把它们种在自己的秘密牧场上。他总将草皮分割成1*1的小块,以放入他牧场上的N个格子中。
Bessie感兴趣的是,她若选取四块会有多少种不同方法。如果N=4,那么她就有5种不同分发:(1,1,1,1),(2,0,0,0),(0,2,0,0),(0,0,2,0),(0,0,0,2),括号内数表示边长。注意这里不讲究顺序,如(1,2,3,4)与(4,3,2,1)是两种不同方法。
输入格式
仅一行,一个整数N。
输出格式
同样为一行,包含一个整数,为方案总数。
循环的方法
#include <iostream>
using namespace std;
int main()
{
int N,Num[105],sum=0;
cin>>N;
for(int i=0; i<=100; i++)
{
Num[i]=i*i;
}
for(int i=0; i*i<=N; i++)
{
for(int j=0; j*j<=N; j++)
{
for(int k=0; k*k<=N; k++)
{
for(int l=0; l*l<=N; l++)
{
if(Num[i]+Num[j]+Num[k]+Num[l]==N)
sum++;
}
}
}
}
cout<<sum;
return 0;
}
循环的方法改写为dfs
#include<iostream>
using namespace std;
int Num[105],ans=0;
void dfs(int sum,int N,int cnt)
{
if(sum>N)
return ;
if(cnt==4)
{
if(N==sum)
ans++;
return ;
}
for(int i=0; i*i<=N; i++)
{
dfs(sum+Num[i], N, cnt+1);
}
}
int main()
{
for(int i=0; i<=100; i++)
{
Num[i]=i*i;
}
int N;
cin>>N;
dfs(0,N,0);/*1 2 3 4*/
cout<<ans;
return 0;
}