矩形重叠

flag

软件学院大三党,每日一道算法题,第21天

题目描述

矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左下角的坐标,(x2, y2) 是右上角的坐标。

如果相交的面积为正,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。

给出两个矩形,判断它们是否重叠并返回结果。

在这里插入图片描述

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rectangle-overlap

思路

这道题很坑啊,想成立的情况非常难,情况非常复杂,但是想不成立的情况就很简单了:
①rec1左横坐标比rec2右横坐标还大
②rec1下纵坐标比rec2上纵坐标还大
③rec1右横坐标比rec2左横坐标还小
④rec1上纵坐标比rec2下纵坐标还小

代码

    public static boolean isRectangleOverlap(int[] rec1, int[] rec2) {

        /**
         * 左下角(rec[0],rec[1])
         * 右下角(rec[2],rec[1])
         * 左上角(rec[0],rec[3])
         * 右上角(rec[2],rec[3])
         */
        if (rec1[0] >= rec2[2])//rec1左横坐标比rec2右横坐标还大
            return false;
        if (rec1[1] >= rec2[3])//rec1下纵坐标比rec2上纵坐标还大
            return false;
        if (rec1[2] <= rec2[0])//rec1右横坐标比rec2左横坐标还小
            return false;
        if (rec1[3] <= rec2[1])//rec1上纵坐标比rec2下纵坐标还小
            return false;
        return true;
    }
836. 矩形重叠是一道经典的计算几何问题。给定两个矩形的左下角和右上角坐标,我们需要判断这两个矩形是否重叠。 要判断两个矩形是否重叠,我们可以比较它们的位置关系。如果第一个矩形的右上角坐标小于第二个矩形的左下角坐标,或者第一个矩形的左下角坐标大于第二个矩形的右上角坐标,那么这两个矩形是不重叠的。反之,如果两个矩形的左下角和右上角坐标都满足条件,那么它们就是重叠的。 我们可以用以下伪代码来实现这个判断过程: function isRectangleOverlap(rectangle1, rectangle2): if rectangle1.top < rectangle2.bottom or rectangle1.bottom > rectangle2.top: return false if rectangle1.right < rectangle2.left or rectangle1.left > rectangle2.right: return false return true 其中,rectangle1和rectangle2分别代表两个矩形的左下角和右上角坐标。top、bottom、left和right分别代表矩形的上边界、下边界、左边界和右边界。 通过这个算法,我们就可以判断两个矩形是否重叠了。不过需要注意的是,对于矩形重叠的问题,不同人可能有不同的定义。在本算法中,我们采用的是矩形边界不重叠的定义。如果边界重叠也算作矩形重叠的话,只需要将上述判断条件中的小于号和大于号改为小于等于号和大于等于号即可。 总之,矩形重叠问题可以通过比较矩形的坐标来判断。这是一道简单但常见的计算几何问题,我们可以用上述算法快速解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值