题目
如下的10个格子
填入0~9的数字。要求:连续的两个数字不能相邻。
(左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
解题思路
全排列解决问题。可以用C++的next_permutation,也可以自己用递归写一个全排列。
代码解惑
可通过C++的next_permutation函数快速完成全排列。
可以如下代码实现:
#include<iostream>
#include<algorithm>
using namespace std;
int a[] = {0,1,2,3,4,5,6,7,8,9};
int ans = 0;
bool check(int a[]){
if(abs(a[0]-a[1])==1||
abs(a[0]-a[3])==1||
abs(a[0]-a[4])==1||
abs(a[0]-a[5])==1||
abs(a[1]-a[2])==1||
abs(a[1]-a[4])==1||
abs(a[1]-a[5])==1||
abs(a[1]-a[6])==1||
abs(a[2]-a[6])==1||
abs(a[2]-a[5])==1||
abs(a[3]-a[4])==1||
abs(a[3]-a[7])==1||
abs(a[3]-a[8])==1||
abs(a[4]-a[5])==1||
abs(a[4]-a[8])==1||
abs(a[4]-a[7])==1||
abs(a[4]-a[9])==1||
abs(a[5]-a[6])==1||
abs(a[5]-a[8])==1||
abs(a[5]-a[9])==1||
abs(a[6]-a[9])==1||
abs(a[7]-a[8])==1||
abs(a[8]-a[9])==1)
return false;
else
return true;
}
void f(int n){
if(n==9){ //这里写10或9都写,因为到9时也只剩下一个元素,不会再生变化
if(check(a)){ //很简单的对比函数,判断该数组中的相邻数是否相等
ans++;
return;
}
}
for(int i=n;i<10;i++){ //这里的i初值赋值为n而不是0,因为到了f(n)可以看成在第n层,前n-1层数字已经排好,不能再变
{
int tmp = a[i];
a[i] = a[n];
a[n] = tmp;
}
f(n+1);
{ //回溯,每完成一层的任务,返回至上一层的状态
int tmp = a[i];
a[i] = a[n];
a[n] = tmp;
}
}
}
int main(){
f(0);
cout<<ans<<endl;
return 0;
}
还有一种方法,递归处理每一个格子,使用过了的数字放到一个数组,以保证每次拿到的数是唯一的,再结合自定义的check函数,即可解决问题。