torch、torch-scatter、torch-sparse版本依赖问题

torch、torch-scatter、torch-sparse版本依赖问题

在安装pprgo(pytorch)环境时,出现torch、torch-scatter、torch-sparse版本不匹配的问题,setup.py如下:


from setuptools import setup

install_requires = [
        "numpy",
        "scipy>=1.3",
        "numba>=0.49",
#        "torch",
#        "torch-scatter",
#        "torch-sparse",
        "scikit-learn",
        "sacred",
        "seml"
]

setup(
        name='pprgo_pytorch',
        version='1.0',
        description='PPRGo model in PyTorch, from "Scaling Graph Neural Networks with Approximate PageRank"',
        author='Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózemberczki, Michal Lukasik, Stephan Günnemann',
        author_email='a.bojchevski@in.tum.de, j.gasteiger@in.tum.de',
        packages=['pprgo'],
        install_requires=install_requires,
        zip_safe=False
)

手动注释掉torch、torch-scatter、torch-sparse

经过查询发现torch-scatter、torch-spare依赖于torch库,所以必须要版本对应!!!

1.查询cuda版本,下载对应的torch库

linux下输入nvcc- V,返回对应的cuda版本

在这里插入图片描述

cuda_version == 10.1

访问pytorc官网https://pytorch.org/

选择想要下载的torch版本,我这里选择的是1.7.0版本

在这里插入图片描述

找到torch(1.7.0)、cuda10.1对应的下载命令,此处只需要下载torch,因此输入以下命令

pip install torch==1.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

完成后,查看确认torch版本

在这里插入图片描述

2.下载对应版本的torch_scatter、torch_sparse

https://pytorch-geometric.com/whl/

找到对应torch及cuda版本下

在这里插入图片描述

torch-1.7.0+cu101版本下对应的有torch_cluster、torch_scatter、torch_sparse、torch_spline_conv四个与之版本依赖的库,cp36代表所对应的python版本为3.6,分别有对应的linux、windows版本

e.g.我的python版本为3.6,torch-1.7.0+cu101,选择对应的torch_scatter、torch_sparse如上图标红框所示。

在这里插入图片描述

3.安装.whl文件

命令行中直接:

pip install 下载的whl文件所在路径

(或者切换到下载好的.whl文件目录下直接pip install + 文件名)

完成安装!

在这里插入图片描述

### 官方下载链接 对于希望获取 `torch-geometric`、`torch-scatter` 及 `torch-sparse` 的官方版本,推荐的方式是从 PyTorch Geometric 提供的仓库中找到适合特定 CUDA 版本以及 Python 解释器版本的文件。通常情况下,这些库依赖于特定版本PyTorch 并且可能需要匹配相同的 CUDA 工具包版本。 #### 获取适用于指定配置的轮子(Whl) 为了确保兼容性,建议先确认已安装的 PyTorch 版本及其所基于的 CUDA 版本: ```bash python -c "import torch; print(torch.__version__, torch.version.cuda)" ``` 接着访问 [PyTorch Geometric 轮子页面](https://data.pyg.org/whl/) 或者更稳定的长期支持版面如 [PyTorch Stable Releases](https://pytorch-geometric.com/whl/torch_stable.html),从中挑选与当前环境中 PyTorch 和 CUDA 版本相匹配的 `.whl` 文件进行下载和安装[^1]。 例如,如果使用的是带有 CUDA 11.3 支持的 PyTorch 1.10.1,在 Linux 上运行 Python 3.7,则可以通过如下命令来安装所需的组件: ```bash pip install https://data.pyg.org/whl/torch-1.10.1+cu113/torch_cluster-1.5.8-cp37-cp37m-linux_x86_64.whl pip install https://data.pyg.org/whl/torch-1.10.1+cu113/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl pip install https://data.pyg.org/whl/torch-1.10.1+cu113/torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl pip install torch_geometric ``` 请注意 URL 中的具体版本号应当依据实际需求调整,并且确保所有软件包之间的版本相互兼容[^4]。 最后一步直接通过 `pip install torch_geometric` 来完成对 `torch-geometric` 自身的安装,这会自动处理其最低限度的需求项。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值